MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming

MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming

Linear Programming Important Questions

Linear Programming Objective Type Questions

Question 1.
Choose the correct answer:

Question 1.
At which point the value of 3x + 2y is maximum under the constraints x + y ≤ 2, x ≥ 0, y ≥ 0:
(a) (0,0)
(b) (1.5, 1.5)
(c) (2, 0)
(d) (0,2).
Answer:
(c) (2, 0)

Question 2.
Variables of the objective function of linear programming problem are:
(a) negative
(b) zero or negative
(c) zero
(d) zero or positive.
Answer:
(d) zero or positive

MP Board Solutions

Question 3.
Consider the inequalities x1 + x2 ≤ 3, 2x1 + 5x2 ≥ 10, x1 ≥ 0, x2 ≥ 0, which of the following points like in a feasible region:
(a) (2, 1)
(b) (4, 2)
(c) (2, 2)
(d) (1, 2).
Answer:
(d) (1, 2)

Question 4.
In linear constraints the maximum value of objective function will be:
(a) at centre of feasible region
(b) at (0,0)
(c) at one of the vertices of the feasible region
(d) at the vertex which is situated at maximum distance from (0,0).
Answer:
(c) at one of the vertices of the feasible region

Question 5.
Under constraints x – 2y ≤ 6, x + 2y ≥ 0, x ≤ 6 maximum value of P = 3x + 4y is:
(a) 16
(b) 17
(c) 18
(d) 19.
Answer:
(c) 18

MP Board Solutions

Question 2.
Fill in the blanks:

  1. The function whose maximum and minimum value is to be found subject to given linear constraints is called …………………………..
  2. The maximum or minimum value of objective function is called …………………………..
  3. The graph of x ≥ 0 is situated in the …………………… quadrant.
  4. The process of doing certain specified step in a given order is called …………………………….
  5. The common region determined by all constraints including the non – negative constraints x ≥ 0, y ≥ 0 of a linear programming problem is called the ……………………. for the problem.

Answer:

  1. Objective function
  2. Optimum value
  3. First
  4. Programming
  5. Feasible region.

Question 3.
Match the Column:
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
Answer:

  1. (b)
  2. (a)
  3. (d)
  4. (c)
  5. (f)
  6. (e).

Question 4.
Write True/False:

  1. If the variable x is such that its value lies between two fixed point a and b, then {x: a < x < b} is called closed interval.
  2. The function whose maximum or minimum value is to be found is called objective function.
  3. The set of values of the variables satisfying all constraints is called feasible solution of the problem.
  4. If the feasible region is void, then the problem has bounded solution.
  5. Graph of two or more than two equation is called linear inequation system.

Answer:

  1. False
  2. True
  3. True
  4. False
  5. False.

MP Board Solutions

Question 5.
Write the answer in one word/sentence:

  1. Represent y ≤ – 2 graphically?
  2. Represent 2x – 4 ≤ 0 graphically?
  3. The graph of inequation x ≥ 0 and y ≥ 0 will be situated in which quadrant?
  4. What word is used for the maximum or minimum value of the objective function?
  5. P = 5x + 3y is an objective function. The coordinate of the vertices of feasible region are (3, 0), (12, 0), (0, 6). Write minimum value of objective function?

Answer:

1. MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
2. MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
3. First
4. Optimum value
5.15.

Linear Programming Long Answer Type Question – I

Question 1.
Find the maximum value of the function P = 2x + 3 y when the constraints are:
x ≥ 0, y ≥ 0,x + 2y ≤ 10; 2x + y ≤ 14?
Solution:
Because of the constraints x ≥ 0 and y ≥ 0, the graph of other linear inequation should be found on first quadrant only.
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
For x + 2y = 10, the table for values of x and y are given below:
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
For testing point (0, 0) the inequation x + 2y ≤ 10 therefore the region is towards origin 0 + 2 × 0 ≤ 10.
For 2x + y = 14 the table for the values of x and y are given below:
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
For origin (0, 0), 2x + y ≤ 14 is true because 2(0) + 0 ≤ 14. Therefore the region is towards the origin.
The required graph is the common region of the inequations shown by shaded portion OABD of the above graph whose vertices OABD the values of objective function P=2x + 3y is shown in the following table:
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
∴ The maximum value of P is 18 which is on point B (6, 2) for which x = 6, y = 2.

Question 2.
Find the minimum value of function P = x + y subject to constraints 3x + 2y ≥ 12, x + 3y ≥ 11, x ≥ 0, y ≥ 0?
Solution:
Because x ≥ 0, y ≥ 0 the graph of other constraints lies on first quadrant. They are
3x + 2y ≥ 12 ………………….. (1)
x + 3y ≥ 11 …………………… (2)
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
(i) For 3x + 2y = 12 the table for the values of x andy are given below:
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
(ii) For x + 3y = 11 the table for the values of x and y are given below:
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
The testing point (0, 0) does not satisfy both the inequations because
3 (0) +2 (0) ≥ 12 which is false
0 + 3(0) ≥ 11 which is false
Therefore the possible region in an open region whose vertices are A, B, D. The calculation of objective function according to the fundamental extreme point theorem is as below:
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
Therefore, minimum value of P is 5 when x = 2,y = 3.

Question 3.
Show graphically the fixed region by the inequations given below:
x ≥ 0, y ≥ 0, 2x + 5y ≤ 16, 2x + y ≤ 8?
and find the value of* andy for which the function P = 5x+ 4y has maximum value?
Solution:
2x + 5y ≤ 16 ……………………. (1)
and 2x + y ≤ 8 …………………………. (2)
\(\frac { 2x }{ 16 } \) + \(\frac { 5y }{ 16 } \) ≤ 1, [from inequation (1)]
⇒ \(\frac{x}{4}\) + \(\frac { y }{ \frac { 16 }{ 5 } } \) ≤ 1 ………………….. (3)
Similarly, \(\frac { 2x }{ 8 } \) + \(\frac { y }{ 8 } \) ≤ 1 [from inequation (2)]
⇒ \(\frac{x}{4}\) + \(\frac{y}{8}\) ≤ 1 ……………………….. (4)
The region x ≥ 0 and y ≥ 0 representing graphically the inequations (3) and (4),
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
Lines \(\frac{x}{4}\) + \(\frac{y}{8}\) = 1
and \(\frac{x}{4}\) + \(\frac { y }{ \frac { 16 }{ 5 } } \) = 1
Intersects each other at the point B(4, 2). Hence OABC is the region bounded by the lines, where the coordinates of the points O, A, B, C are 0 (0, 0), A (4, 0), B (3, 2), C (0, \(\frac{16}{5}\) ) respectively
On the vertices the value of P = 5x + 4y will be following:
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
From the above table the maximum, value of P is 23 on the point B (3, 2).
Hence the value is maximum at x = 3 and y = 2.

Question 4.
If a young man rides his motorcycle at 25 km per hour, he has to spend Rs. 2 per km on petrol, if he rides it in a faster speed of 40 km per hour, the petrol cost increases to Rs. 5 per km. He has Rs. 100 to spend on petrol and wishes to find what is maximum distance he can travel within one hour. Express this as a linear program¬ming problem and then solve it?
Solution:
Let the distance travelled at 25 km/hour = x km.
And distance travelled at 40 km/hour = y km.
We wish to maximize z = x + y subject to the constraints
2x + 5y ≤ 100 …………………….. (1)
\(\frac{x}{25}\) + \(\frac{y}{40}\) ≤ 1
Now let us solve the linear programme in the following way:
As x ≥ 0 and y ≥ 0 we shall shade the solution set of the other inequalities in the first quadrant.
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
For, eqn. (1),
2x + 5y = 100
x = \(\frac{100 – 5y}{2}\)
Now the test point O (0, 0) makes the inequation (1) true so we shade the half plane containing (0, 0).
For eqn.(2), \(\frac{x}{25}\) + \(\frac{y}{40}\) ≤ 1
or 8x + 5y ≤ 200
⇒ 8x + 5y = 200
⇒ x = \(\frac{200-5y}{8}\)
Again the test point (0, 0) makes the inequality (2) true so we shade the half plane containing (0, 0).
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
The vertices of feasible region are
0(0,0), D (25, 0), G ( \(\frac{50}{3}\), \(\frac{40}{3}\) ) , C (0, 20)
Let us caluculate z = x + y at these points.
At D (25, 0) z = 25 + 0 = 25
At G ( \(\frac{50}{3}\), \(\frac{40}{3}\) ) z = \(\frac{50}{3}\) + \(\frac{40}{3}\) = 30
At C (0, 20) z = 0 + 20 = 20
Hence, Maximum z = 30 km at ( \(\frac{50}{3}\), \(\frac{40}{3}\) ).

MP Board Solutions

Question 5.
A manufacturer plants to install some new machines in his workshop. Type A machine costs Rs. 800 and occupies 3 square metre of floor space. Type B machine costs Rs. 1600 and occupies 1 \(\frac{1}{2}\) square metres of space. He can spend Rs. 20,000 altogether and the space available is 30 sq. metres. Type A turns out 10 components per hour where as type B 15 per hour. Trade restrictions compel him to have at least 3 machines of type A and 4 machines of type B?
What is the maximum number of machines he can install? Which arrangement gives him the maximum output?
Solution:
Let us assume that he buys x machines of type A and y machines of type B. Taking on account the costs of the machines and the total money available 800x + 1600y ≤ 20,000
or x + 2y ≤ 25 ………………. (1)
Again using the conditions of the space available and the space required for the machines
3x + \(\frac{3}{2}\) y ≤ 30
2x + y ≤ 20 …………………….. (2)
Also using the trade restrictions on having two types of machines
x ≥ 3 ……………………….. (3)
y ≥ 4 ……………………. (4)
The number of machines he buys will be x + y and the total output (10x + 15y) per hour.
Let N = x+y ……………………. (5)
and O = 10x + 15y ……………………… (6)
Now our problem is to maximize (5) and (6) subject to constraints (1) to (4).
The shaded region is the feasible region. The comers of the feasible region are the points (3, 4), (8, 4), (5, 10) and (3, 11).
At the point (3, 4)
N = 3+ 4 = 7,O = 30+ 60 = 90
At the point (8,4)
N = 8+ 4 = 12, O = 80 + 60 = 140
At the point (5, 10)
N = 5 + 10 = 15, O = 50 + 150 = 200
At the point (3, 11)
N = 3 + 11 = 14, O = 30 + 165 = 195
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
The maximum number of machines he can buy is 15. Also maximum output can be obtained by using 5 machines of type A and 10 machines of type B.

Question 6.
A soft drinks firm has two bottling plants one located at P and other at Q? Each plant produces three different soft drinks A, B and C? The capacities of two plants in number of bottles per day are as follows:
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
A market survey indicates that during the month of April there will be a demand for 24,000 bottles of A, 16,000 bottles of B and 48,000 bottles of C. The operating cost per day of running plants P and Q are respectively Rs. 6,000 and Rs. 4,000. Find graphi-cally how many days should the firm run each plant in April so that the production cost is minimized?
Solution:
Suppose that firm runs plant P for x days and plant Q for y days in April so the total operating cost of two plants is given by:
z = 6000x + 4000y (objective function)
As P plant produces 3000 bottles and Q plant produces 1000 bottles of drink A per day, so total production of drink A in the supposed period is
(3000x + 1000y) bottles
But there will be a demand for 24,000 bottles of this drink so the restriction 3000x + 1000y ≥ 24000 i.e., 3x + y ≥ 24
Similarly for the other two drink we have the constraints 1000x + 1000y ≥ 16000 i.e., x + y ≥ 16
2000 x + 6000 y ≥ 48000 i.e., x + 3y ≥ 24
Moreover x and y are non – negative. So x ≥ 0, y ≥ 0.
Mathematically, the given problem now reduces to minimize
z = 6000 x – 4000 y (objective function)
Subject to the conditions
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
The graph of the system or inequations can be easily obtained arid is as shown in figure, As (x ≥ 0 and y ≥ 0 the graph has been drawn in the first quadrant only). The points in the region which is common shaded area unbounded above constitutes the graph of the system of inequations.
Now the minimum value of the cost function z = 6000 x + 4000 y
As at one of the points A (24, 0), B (12,4), C (4, 12) and D (0, 24).
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
Hence P is minimum at x = 4 and y = 12. Therefore for minimum cost the firm P should run for 4 days and Q for 12 days.
Minimum cost will be Rs. 72,000.

MP Board Solutions

Question 7.
A and B are the two tailor A earns Rs. 150 per day and B earns Rs. 200 per day? A can stich 6 shirts and 4 pants per day and B can stich 10 shirts and 4 pants per day? Formulate the above as a linear programming problem (L.P.P.) for minimizing the cost of at least 60 shirts and 32 pants? (CBSE 2005)
Solution:
Let, tailor works x days and tailor B works y day.
Hence, invest function is
Z = 150x + 200y
According to the function, tailor A, stich 6 shirts and B stich 10 shirts, for minimizing the cost of at least 60 shirts.
6x + 10 ≤ 60
and tailor A stich, 4 pants and B stich 4 pants, for minimizing the cost of at least 32 pants.
4x + 4y ≤ 32
and x ≥ 0, y ≥ 0
Similarly,
For minimizing invest function Z = 150x + 200y subject to the following contraints
6x + 10y ≤ 60
4x + 4y ≤ 32.
Note: For drawing the graph of constraints 6x + 10y ≤ 60, we will draw the graph of 6x + 1o y = 60.
\(\frac{6x}{60}\) + \(\frac{10y}{60}\) = 1
\(\frac{x}{10}\) + \(\frac{y}{6}\) = 1 ……………….. (1)
Line (1) cuts the intercepts 10 and 6 respectively with the coordinates axes.
i.e., By joining the points P(10,0) and Q( 0,6) get the graph of line 6x +10y = 60 easily.
Similarly draw the graph of 4x + 4y = 32
⇒ \(\frac{4x}{32}\) + \(\frac{4y}{32}\) = 1
⇒ \(\frac{x}{8}\) + \(\frac{y}{8}\) = 1 …………………….. (2)
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming
Line (2) cuts the intercepts 8, 8 with the coordinates respectively i.e., graph of line 4x + 4y = 32 can be find by joining the points A(8, 0) and B(0, 8).
(i) x ≥ 0, all points above and on the X – axis in the solution set.
(ii) y ≥ 0, all points above and on the Y – axis in the solution set.
(iii) Taking testing point O (0, 0) for finding the solution set of 6x + 10y ≤ 60 we have, 6 × 0 + 10 × 0 < 60
⇒ 0 < 60 , which is true.
Hence all points on the line 6x + 10y = 60 including all points near to the origin is the solution set of 6x +10y ≤ 60.
(iv) Similarly, solution set of 4x + 4y ≤ 32 towards to the origin and each point on the line 4x + 4y = 32.
Hence, the common region of x ≥ 0, y ≥ 0, 6x + 10y ≤ 60 and 4x + 4y ≤ 32 shown in above graph by shaded region.
i.e., the required region is OACQ whose corner points are O (0, 0), A (8, 0), C (5, 3) and Q (0, 6).
MP Board Class 12th Maths Important Questions Chapter 12 Linear Programming

Minimum value of invest Z = 150x + 200y is 0 and maximum invest cost of Rs. 1350 is corresponding to point (5, 3).

MP Board Class 12 Maths Important Questions

MP Board Class 12th Physics Important Questions Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

MP Board Class 12th Physics Important Questions Chapter 14 Semiconductor Electronics: Materials, Devices and Simple Circuits

Semiconductor Electronics: Materials, Devices and Simple Circuits Important Questions 

Semiconductor Electronics: Materials, Devices and Simple Circuits Objective Type Questions

Question 1.
Choose the correct answer of the following:

Question 1.
The forbidden energy gap in Germanium crystal is :
(a) 1.2 x 10-19J
(b) 1.76 x 10-19J
(c) 1.6 x 10-19J
(d) Zero
Answer:
(a) 1.2 x 10-19J

Question 2.
The valency of impurity dopped in a pure germanium crystal to make it P – type semiconductor is:
(a) 3
(b) 4
(c) 5
(d) 6
Answer:
(a) 3

Question 3.
The deplection layer of P – N junction has :
(a) Electrons
(b) Protons
(c) Mobile ions
(d) Immobile ions
Answer:
(d) Immobile ions

MP Board Solutions

Question 4.
The width of deplection layer in P-N junction diode is
(a) 10-3 m
(b) 10-4 m
(c) 10-5 m
(d) 10-6 m
Answer:
(d) 10-6 m

Question 5.
Zener diode is used as :
(a) Amplifier
(b) Rectifier
(c) Oscillator
(d) Voltage regulation
Answer:
(d) Voltage regulation

Question 6.
Light emitting diode is formed by :
(a) Silicon
(b) Germanium
(c) Carbon
(d) Ga – As
Answer:
(d) Ga – As

Question 7.
Which of the following is a photo voltaic device :
(a) Photo cell
(b) LED
(c) Zener diode
(d) Solar cell
Answer:
(d) Solar cell

Question 8.
When N – P – N transistor is used as amplifier then :
(a) Electrons goes from base to collector
(b) Holes goes from emitter to base
(c) Holes goes from collector to base
(d) Holes goes from base to emitter.
Answer:
(a) Electrons goes from base to collector

Question 9.
The relation between current gain in CB mode (α) and current gain (β) in CE mode is:
(a) β = α + 1
(b) β = \(\frac {α}{1 – α}\)
(c) β = \(\frac {α}{1 + α}\)
(d) β = 1 – α.
Answer:
(b) β = \(\frac {α}{1 – α}\)

Question 10.
In CE amplifier the phase difference between input and output signals is :
(a) 0°
(b) 90°
(c) 180°
(d) 270°.
Answer:
(c) 180°

MP Board Solutions

Question 11.
Oscillator is an amplifier with :
(a) Positive feed back
(b) Negative feed back
(c) No feed back
(d) High current gain.
Answer:
(a) Positive feed back

Question 12.
The boolean expression for NAND gate is :
(a) A + B = Y
(b) A – B = Y
(c) A = Y
(d) AB = Y.
Answer:
(d) AB = Y.

Question 2.
Match the Column :
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 1
Answer:

  1. (c)
  2. (e)
  3. (d)
  4. (b)
  5. (a)

Question 3.
Fill in the blanks :

  1. Zenar diode is used as ……………..
  2. The ratio of change in output voltage to change in the input Voltage is called ……………..
  3. Power gain = (Current gain)2 x ……………..
  4. With increase in temperature of a semiconductor its conductivity ……………..
  5. In an intrinsic semiconducter the forbidden energy gap is of order of ……………..
  6. Main function of a tank circuit is to produced ……………..
  7. In a NAND gate there is a …………….. gate along with AND gate.
  8. NOT gate is also called as ……………..
  9. The boolean expression of AND gate is ……………..
  10. If Y = \(\overline {A+B}\) then gate is ……………..
  11. Photo diode is used as ……………..
  12. Light emitting diode is used in …………..

Answer:

  1. Voltage regulation
  2. Voltage gain
  3. Resistance gain
  4. Increases
  5. 1 eV
  6. Oscillations
  7. NOT
  8. Inverter
  9. Y = A.B
  10. NOR
  11. To defect light
  12. Light emission.

Question 4.
Write the answer in one word/sentence :

  1. How does the energy gap in the intrinsic semiconductor varies on introducing a penta valent impurity in it?
  2. Whose drift velocity is greater holes or electrons.
  3. On increasing the reverse bias in P – N junction diode how does the width of depletion layer vary?
  4. In which bias the resistance of P – N junction diode is very high?
  5. What is use of zener diode?
  6. A transistor is used as an amplifier in common emitter mode rather than in common base mode why?

Answer:

  1. The energy gap decreases
  2. The drift velocity of electrons is greater than that of holes
  3. The width of depletion layer increases
  4. Reverse bias.
  5. It is used as voltage regulator
  6. Because in common emitter amplifier the voltage gain and power gain is more.

Semiconductor Electronics: Materials, Devices and Simple Circuits Very Short Answer Type Questions

Question 1.
What are semiconductors? Write down names of any two semiconductors.
Answer:
The substances which have electrical conductivity between conductors and insulators are called semiconductors.
Examples:
Germanium, silicon.

Question 2.
How does the conductivity of semiconductors affected on heating the semi – conductors?
Answer:
When a semiconductors is heated then the covalent bond get broken and the valence electrons becomes free. With increase in temperature the number of free electrons increases. Hence the conductivity of semiconductor increases.

Question 3.
Choose the conductor, insulator and semiconductors in the following : Germanium, Tungsten, Air, Silver, Silicon, Carbon.
Answer:

  1. Conductor : Tungsten, Silver.
  2. Insulator : Air
  3. Semiconductor : Germanium, Carbon, Silicon.

MP Board Solutions

Question 4.
Write difference between the charge occurs in the resistivity of metals and intrinsic semiconductor with temperature.
Answer:
With increase in the temperature the resistivity of metals increases while that of intrinsic semiconductor decreases.

Question 5.
Draw the symbol of P – N junction diode.
Answer:
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 2

Question 6.
How can a pure semiconductor be converted into a P – type semiconductor?
Answer:
When a trivalent impurity such as indium, boron etc are introduced into pure semiconductor then P – type semiconductor is formed.

Question 7.
How can a pure semiconductor be converted into a N – type semiconductor?
Answer:
When a pentavalent impurity such as antimeny, arsenic phosphorus etc. are introduced into pure semiconductor then N – type semiconductor is formed.

Question 8.
What is the ratio of number of holes to number of electrons in an intrinsic semiconductor?
Answer:
1 : 1.

Question 9.
Write the name of majority charge carriers in P – type and N – type semiconductors.
Answer:
In P – type semiconductor majority charge carriers are holes and in , N – type semiconductor majority charge carriers are electrons.

Question 10.
What is LED?
Answer:
It is Abbreviation of ‘Light Emitting Diode’. It is a P – N junction which, when used in reverse bias, emits the light.

MP Board Solutions

Question 11.
In a transistor emitter is always forward biased and collector is reverse biased, why?
Answer:
The charge carriers (electrons or holes) are moved only when the emitter is forward biased while collector will occupy them only when it is reverse biased. So that there is a unidirectional flow of current.

Question 12.
What are universal gate?
Answer:
NOR gate and NAND gate are called as universal gate, because by the combination of these gates, other logic gates can be obtained.

Question 13.
What is dopping? Why it is necessary?
Answer:
The process of introducing the impurities in a pure semiconductor is called dopping. To form N – type and P – type semiconductors dopping is necessary.

Semiconductor Electronics: Materials, Devices and Simple Circuits Short Answer Type Questions

Question 1.
What do you understand by intrinsic and extrinsic semiconductors?
Answer:
Intrinsic semiconductors:
Pure semiconductors are called intrinsic semiconductors example germanium and silicon. The number of electrons and holes are equal in it.

Extrinsic semiconductors:
The semiconductors containing impurities of pentavalent or trivalent substances are called extrinsic semiconductors. The electron density is not equal to hole density.

Question 2.
Semiconductors are used to form the transistor. Why?
Answer:
Transistor are made by N – type and P – type semiconductors where the charge carriers are electrons and holes. Thus, the function of transistor is based on the control over the motion of electrons and holes. This control is not possible in conductors and insulators. Therefore only semiconductors are used to make transistors.

Question 3.
Explain the meaning of word “Transistor”.
Answer:
Transistor is a short form of transformation of resistance. The low resistance of forward biased junction is transformed to high resistance of reverse biased junction. Therefore it is called as transistor.

MP Board Solutions

Question 4.
Why the base is designed thin in comparison to emitter and collector in a transistor?
Answer:
A thin and lightly doped base region will contain a smaller number of majority charge carriers. This will reduce the recombination rate of electrons and holes when major-ity charge carriers move from emitter to collector.

Question 5.
Draw symbols of P – N – P and N – P – N transistors.
Answer:
P – N – P Transistor N – P – N Transistor
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 3

Question 6.
What is difference between transformer and transistor?
Answer:
The transformer changes alternating voltage but the power remains same. Amplifier increases power of alternating voltage.

Question 7.
Draw symbol of NAND and NOR gate.
Answer:
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 4

Question 8.
What is Universal gate? Why they are called so?
Answer:
NOR and NAND gates are called as universal gates because by the combination of these gates other gates can be formed.

Question 9.
How will you obtain NOT gate from NAND gate? Draw logic symbol and write truth table.
Answer:
When the two input signal of NAND gate are joined together then the output signal obtained is equivalent to that of NOT gate.
Symbol :
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 5
Truth table:
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 6

Question 10.
How will you obtain AND gate from NOR gate?
Answer:
To obtain AND gate from NOR gate:
If the output of two NOT gate obtained by NOR gates are used as two inputs of a NOR gate then the resultants output be same as the output of AND gate.
Symbol:
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 7
Truth table:
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 8

Question 11.
How will you obtain OR gate from NAND gate?
Answer:
If the two outputs of NOT gates obtained by NAND gates are used as inputs of a NAND gate then the final output be same as the output of OR gate.
Symbol:
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 9
Truth table:
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 10

Question 12.
What is dopping? Why it is necessary?
Answer:
The process of introducing the impurities in a pure semiconductor is called dopping. To form N – type and P – type semiconductors dopping is necessary.

Question 13.
Identify the following symbol, write its boolean expression and write the truth table:
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 11
Answer:
It is a NAND gate.
Boolean expression : y = \(\overline { A.B } \quad\)
Truth table:
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 12

Question 14.
Explain the following terms with reference to a P – N junction :

  1. Uncovered charge
  2. Depletion layer
  3. Potential barrier.

Answer:

1. Uncovered charge : The positive immobile ions present on the N – region and negative immobile ions present in P – region near the junction are called uncovered charge.

2. Depletion layer : The layer on either side of P – N junction which does not contain any charge carrier (neither positive charge carrier nor negative charge carrier) is called depletion layer.

3. Potential barrier : The potential difference developed across the depletion layer is called the potential barrier.

Question 15.
What is P – N diode? Explain the formation of depletion layer in it.
Answer:
When P – type semiconductor is joined with N – type semiconductor by some special techniques as etching or sandwitching, then the junction formed is called P – N diode. It works similar to that of diode valve. Hence, it is called P – N junction diode. When P – N junction diode is made, then free electrons present in N – type get diffused across the boundary into P – type and few number of holes diffuse into N – type from P – type. Thus, a thin film (less than 10-3 cm) at the junction becomes free from holes and electrons. This thin film is called depletion layer.

MP Board Solutions

Question 16.
What is zener diode? Explain it.
Answer:
Zener diode is P – N junction diode which is fabricated for a definite breakdown voltage. The value of breakdown voltage depend upon the doping density of P – and ,V – type semiconductor. The breakdown voltage depends upon the concentration of doping, in a highly dopped P – N junction, the depletion layer is very thin so that the value of zener voltage becomes very small.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 13
For a definite breakdowm voltage zener diode ner diode is constructed by a special doping in such a way that it doesn’t get damaged even it working at breakdown voltage at reverse bias.

Symbol:
The symbol of zener diode is shown in adjacent fig.

Principle:
In the reverse biased zener diode, on applying breakdown voltage it allows easy flow of current. But inspite of flow of current the P – N junction do not get de – stroyed. When the applied voltage becomes less than breakdown voltage it again becomes a normal P – N junction diode.

Use:
It is used as voltage regulator.

MP Board Solutions

Question 17.
What is a Solar cell?
Or
How a junction diode can be used as a solar cell?
Answer:
Solar cell:
It is a P – N junction diode which converts the solar energy into electrical energy. It works on the principle of photoelectric effect.

When the solar light fall on the P – N junction then an e.m.f. is produced across its ends. This e.m.f. is called as photoelectric e.m.f. Hence a P – N junction acts as source of e.m.f. This is called solar cell.

Working:
When light photons reach the junction they excite electrons from the valence band to conduction band leaving behind equal number of holes in the valence band. The electron hole pairs generated in the deplection region move in opposite directions due to the barrier field. Photo generated electrons move towards N – region and holes towards P – region.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 14
The collection of these charge carriers make P – region positive electrode and N – region a negative electrode. Hence photovoltage is set up across the junction. When a load resistance R is connected in the external circuit, a photo current I flows through it.

Question 18.
Explain the working of N – P – N transistor with labelled diagram.
Answer:
The adjacent fig. shows the N – P – N transistor in CE mode.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 15
The emitter is at negative potential w.r.t. the base and collector. The electron of emitter region are repelled by the negative terminal of the battery VBE and move towards the base region, as the base region is very thin most of the electrons cross this region and enter to the collector region. Only 2% to 5% of electrons combine with the holes present in base region, therefore Ib the base current flows. The electrons entering into collector region are attracted very fast by the positive terminal of battery VCE and collector current Ic flows through the external circuit.
If the emitter current is Ie then by Kirchhoff’s law
Ie = Ib + Ic

Semiconductor Electronics: Materials, Devices and Simple Circuits Long Answer Type Questions

Question 1.
Explain P – type semiconductors in terms of energy band.
Answer:
When a trivalent impurity (Such as Boron, Aluminium etc.) is introduced (dopped) in a pure Ge crystal then a P – type semiconductor is formed.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 16
In a P – type semiconductor each acceptor impurity atom process a hole. This hole is fulfilled by an electron of nearest Ge – Ge band. To remove the electron from covalent band and to bring it to the hole very small amount of energy (about 0.01 – 0.05 eV) is required. Hence the acceptor energy level is slightly above the top of valence band. At room temperature the electrons of valence band get excited and reach to the acceptor level. Therefore same number of holes are created in valence band. Thus in P- type semiconductor the number of holes in valence band is much greater than the number of electron in conduction band.

Question 2.
What do you understand by N – type and P – type semiconductors? Give differences between them.
Or
Differentiate between the P – type and N – type semiconductors.
Answer:
N – type : When pure germanium is introduced by small amount of a pentavalent atoms as antimony, arsenic, etc. then N – type semiconductors are formed.

P – type : When pure germanium is introduced by small amount of a trivalent atoms as indium, boron, etc. then P – type semiconductors are formed.

Difference between N – type and P – type semiconductors :
N – type:

  • N – type of semiconductors are formed by the impurities of pentavalent elements.
  • Electrons are the charge carriers.
  • Number of electrons in conduction band is greater than the number of holes in valence band.
  • Fermi level is towards conduction band.

P – type:

  • P – type of semiconductors are formed by the impurities of trivalent elements.
  • Holes are the charge carriers.
  • Number of holes in valence band is greater than the number of electrons in conduction band.
  • Fermi level is towards valence band.

MP Board Solutions

Question 3.
Explain working of P – N – P transistor in CE mode.
Answer:
Working of P – N – P transistor :
The figure shows the common emitter circuit. The emitter is at positive potential w.r.t. the potential of base and collector. The holes coming from the emitter are only 2% to 5% which combine in the base region thus low current is flown in emitter circuit and other holes are attracted by the negative terminal of the battery Vce.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 17
As soon as the hole reaches to the end, the electron from the negative terminal of the battery Vce neutralizes it and at the same time, a covalent band breaks at emitter region. Thus, an electron enters the positive terminal of the battery Vbe and the same process is repeated. Thus, the current flows through P – N – P transistor by holes and outside it in external circuit by electrons. If the emitter current be Ie. Then, Ie = Ib + Ic.

Question 4.
Explain with a circuit diagram, how common emitter P – N – P transistor is used as amplifier?
Or
Explain the working of P – N – P transistor as amplifier in CE mode with a circuit diagram.
Answer:
In concerning circuit use of transistor as an amplifier is shown :
Where, S → Input signal, R → Load resistance, Vc → Collector voltage. In this circuit, emitter is kept at positive potential relative to the base and collector. Input signal is applied between base and emitter. Load resistance R is added to the collector circuit.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 18
As a result collector becomes more negative and output signal becomes negative. In next half cycle of input signal, potential of base becomes more negative relative to emitter and Ic increases, therefore value of collector voltage Vc decreases or it becomes negative which gives positive output signal.

In this way, opposite signals are obtained in different half cycles of input signal. So, it is clear that there is phase difference of 180° between the input and output signals.

Question 5.
Explain the working of N-P-N transistor as amplifier in CE mode under following points :

  1. Circuit diagram
  2. Working
  3. Voltage gain.

Answer:
1. Circuit diagram :
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 19

2. Working:
The emitter terminal is common to both the input and output circuit. While the input circuit is forward – biased, the output circuit is reverse – biased.

When no a.c. signal (input) is supplied to the input, the collector current Ic flows through load resistance (R) will produce a voltage drop Ic R across R. Hence, the net output voltage is
Vc =Vce – Ic R … (1)

Suppose the signal to be amplified is now fed the input circuit. During the positive half cycle of input, the forward bias of base – emitter increases. So, emitter and collector current increases. Hence, from equation (1), Vc decreases. But Vc is joined to high potential, so high potential value decreases. So, amplified signal becomes negative. This explains the amplification of positive half cycle.

During the negative half cycle of input, forward bias decreases both emitter and collector current decreases, hence Vc increases by equation (1). So, the output becomes more positive. Clearly, the output signal is 180° out of phase from the input signal.

3. Voltage gain:
The ratio of change in output voltage to the change in input voltage is called voltage gain. It is denoted by Av.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 20

Question 6.
What is NAND gate? Write its symbol, truth table and boolean expression.
Answer:
When a NOT gate is connected at the output of AND gate then the logic gate formed is known as NAND gate.
Symbol:
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 21
Truth Table:
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 22
Boolean expression : \(\overline { A.B } \quad\) = Y.

Question 7.
Explain NOT gate under the following heads :

  1. Symbol
  2. Relation between input and output
  3. Equivalent circuit.

Answer:
1. Symbol:
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 23

2. Relation between input and output : Y = \(\overline { A}\), where Y is output and A is input.

3. Equivalent circuit:
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 24

Question 8.
What is rectification? Explain half – wave rectification by diode on the basis of following points:

  1. Labelled diagram of circuit
  2. Working

Or
Describe the use of P – N junction diode as half wave rectifier under the following heads:

  1. Labelled circuit diagram
  2. Working
  3. Graph for time variation of input and output potential.

Answer:
Rectification:
The phenomenon of conversion of a.c. to d.c. is known as rectification.

1. Labelled diagram:
a.c. → Input a.c. voltage, T → Step – up transformer, PN → Junction diode, R → Load.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 25

2. Working:
When an a.c. voltage is applied to the primary coil of transformer, then an a.c. voltage is induced in the secondary coil of transformer. Let in half cycle, A is at positive potential w.r.t. that of B. Then P – N junction diode is in forward – biased. Thus, the current flows through it and conventional cunrent flows through R, from C to D.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 26
In the next half cycle, A is at negative potential w.r.t. B. The junction diode is in reverse – biased and no current flows through R. The same phenomenon is repeated in the next cycle. Therefore, only half cycle of the input a.c. wave is converted into d.c. This process is called half – wave rectification.

Question 9.
What is rectification? Drawing the electrical circuit show a P – N diode can be used as full wave rectifier.
or
Describe the use of P – N junction diode as a full wave rectifier under the following heads:

  1. Labelled circuit diagram
  2. Working
  3. Wave form of output signals.

Or
What is a rectifier? Draw circuit diagram to explain the use of P – N junction diode as full wave rectifier.
Answer:
The process of converting the alternating current into direct current is called rectification and the circuit used for the purpose of rectification is called rectifier circuit.

1. Labelled diagram :
T → Step – up transformer, D1 D2 → Diodes, R → Load.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 27

2. Working function:
When a.c. voltage is applied on primary coil of step – up transformer T, a.c. voltage induces in secondary coils. In first half cycle, A is at positive and B is at negative potential with respect to E. Therefore, diode D1 becomes forward – biased and current flows in load resistance R from C to D. This time point B is at lower potential relative to E, therefore D2 is at reverse biased.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 28
In second half cycle, A is at negative and B is at positive potential relative to E. D1 gets reverse – biased and stops working where D2 is at forward – biased and allows current to flow from C to D. In this way in both the half cycles, current flows through the load resistance and diode behaves as full-wave rectifier.

Question 10.
Draw a labelled circuit to explain the use of P – N – P transistor in CE mode as an amplifier. Obtain expression for current gain, voltage gain and power gain.
Answer:
See Long Answer Type Question No. 4 for circuit diagram and working.

1. Current gain : The ratio of change in collector current to change in base current is called current gain. It is denoted by β.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 29

2. Voltage gain: The ratio of change in output voltage ∆VCE to change in input voltage ∆VBE is called voltage gain AV.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 30

3. Power gain : The ratio of change in output power to change in input power is called power gain.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 31

Question 11.
What is oscillator? Explain the function of transistor as an oscillator.
Or
What is an oscillator? Draw necessary circuit diagram to show the use of transistor as an oscillator.
Or
What is an oscillator? Explain use of transistor as oscillator under following points:

  1. Labelled circuit diagram
  2. Working.

Answer:
Oscillator : Oscillator is a device which can produce high frequency oscillations.

Use of transistor as an oscillator : A circuit is given in which a transistor is used in common emitter configuration.

Theory:
By proper coupling a tank circuit (L1 – C1 circuit) and feedback circuit a transistor oscillator can be made. A tank circuit is joined between the collector and key K. C1 is a variable capacitor with the help of which any desired frequency can be obtained in tank circuit. An inductor L1 is added between the base and emitter. Inductor L is coupled properly with inductor L1.
MP Board 12th Physics Important Questions Chapter 14 Semiconductor Electronics Materials, Devices and Simple Circuits 32
Working function:
When key K is pressed electric oscillation starts in tank circuit. As L is coupled with L1, e.m.f. is produced in inductor L due to induction of which value changes in magnitude and direction. In this way increase in base potential causes increase in collector current which helps oscillation in tank circuit. As a result, tank circuit L1 – C1 oscillates with constant amplitude. Energy wasted is recovered from the battery.
Frequency of oscillation, ν = \(\frac { 1 }{ 2\pi \sqrt { { L }_{ 1 }{ C }_{ 1 } } }\)
Where, L1 = Induction of inductor L,C1 = Capacity of capacitor C.

Semiconductor Electronics: Materials, Devices and Simple Circuits Numerical Questions

Question 1.
In a P – N junction, width of depletion layer is 10-6 m and potential barrier is 0.7 Volt. Calculate the barrier electric field.
Solution:
Given : d = 10-6 m, V = 0.7 volt
Formula: E = \(\frac {V}{d}\)
∴E = \(\frac { 0.7 }{ { 10 }^{ -6 } }\), or E = 7 x 105 volt/metre.

Question 2.
In a P – N junction diode if the potential is changed by 0.12 volt then cunrent changes by 1.5 mA. Find out dynamic resistance of diode.
Solution:
Given : ∆V = 0.12 volt, ∆ I = 1.5 mA = 1.5 x 10-3A
Formula : rd = \(\frac {∆V}{∆d}\)
or rd = \(\frac { 0.12 }{ 1.5\times { 10 }^{ -3 } }\)
= \(\frac {0.12}{1.5}\) x 103 = 80 ohm.

MP Board Solutions

Question 3.
The current gain of a transistor in CB mode is 0.987. What will be its current gain in CE mode?
Solution:
Given : α = 0.987
Formula : β = \(\frac {α}{1 – α}\)
β = \(\frac {0.987}{1 – 0.987}\) = 75.93.

MP Board Class 12th Physics Important Questions

MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry

MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry

Three Dimensional Geometry Important Questions

Three Dimensional Geometry Objective Type Questions

Question 1.
Choose the correct answer:

Question 1.
The FZ – plane divides the line segment joining the points P (- 2, 4, 7) and Q (3, -5, 8) in the ratio:
(a) 2 : 3
(b) 1 : 2
(c) 2 : 5
(d) 3 : 4
Answer:
(a) 2 : 3

Question 2.
If a line makes an angle \(\frac { \pi }{ 4 } \) with both the positive direction of the x – axis, and y – axis, then the angle made by the line with positive direction of the Z – axis is:
(a) \(\frac { \pi }{ 6 } \)
(b) \(\frac { \pi }{ 3 } \)
(c) \(\frac { \pi }{ 4 } \)
(d) \(\frac { \pi }{ 2 } \)
Answer:
(d) \(\frac { \pi }{ 2 } \)

MP Board Solutions

Question 3.
Equation of the line passing through the points (2, 3, 4) and (1, -2, 3) are:
(a) \(\frac { x-2 }{ 1 } \) = \(\frac { y-2 }{ -5 } \) = \(\frac { z-4 }{ 1 } \)
(b) \(\frac { x-2 }{ -1 } \) = \(\frac { y-3 }{ -5 } \) = \(\frac { z-4 }{ -1 } \)
(c) \(\frac { x-2 }{ -1 } \) = \(\frac { y-3 }{ 5 } \) = \(\frac { z-4 }{ -1 } \)
(d) \(\frac { x-2 }{ -1 } \) = \(\frac { y-3 }{ -5 } \) = \(\frac { z-4 }{ 1 } \)
Answer:
(b) \(\frac { x-2 }{ -1 } \) = \(\frac { y-3 }{ -5 } \) = \(\frac { z-4 }{ -1 } \)

Question 4.
Angle between the planes x + 2y + z + 7 = 0 and 2x + y – z + 13 = 0 is:
(a) \(\frac { \pi }{ 2 } \)
(b) \(\frac { \pi }{ 3 } \)
(c) \(\frac { 3\pi }{ 2 } \)
(d) π
Answer:
(b) \(\frac { \pi }{ 3 } \)

Question 5.
Equation to the plane which cuts off intercepts 2, 3, -4 on the axis is:
(a) \(\frac{x}{2}\) + \(\frac{y}{3}\) – \(\frac{z}{4}\) = 0
(b) \(\frac{x}{2}\) + \(\frac{y}{3}\) – \(\frac{z}{4}\) = -1
(c) \(\frac{x}{2}\) + \(\frac{y}{3}\) – \(\frac{z}{4}\) = 1
(d) None of these.
Answer:
(c) \(\frac{x}{2}\) + \(\frac{y}{3}\) – \(\frac{z}{4}\) = 1

MP Board Solutions

Question 2.
Fill in the blanks:

  1. Direction cosine of unit vector \(\frac { 1 }{ \sqrt { 14 } } \) ( \(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) ) are ………………………….
  2. Direction cosine of X – axis are ………………………….
  3. Angle between the diagonals of cube is ………………………….
  4. Angle between the straight lines \(\frac{x}{1}\) = \(\frac{y}{0}\) = \(\frac{z}{-1}\) and \(\frac{x}{3}\) = \(\frac{y}{4}\)
    = \(\frac{z}{5}\) is ………………………….
  5. If the lines \(\frac { x-2 }{ 3 } \) = \(\frac { y-3 }{ 4 } \) = \(\frac { z-4 }{ k } \) and \(\frac { x-2 }{ 3 } \) = \(\frac { y-3 }{ 4 } \) = \(\frac { z-4 }{ k } \) are coplaner, then k …………………………..
  6. If the line makes an angle α, β, γ with the coordinate axis respectively, then cos2α + cos2β + cos2 γ = ……………………………..
  7. Intercept cut by the plane 2x + y – z = 5 on axis is ……………………………..

Answer:

  1. True
  2. False
  3. True
  4. True
  5. False
  6. True
  7. False

MP Board Solutions

Question 3.
Write True/False:

  1. The points A (1, 2, 3), B (4, 0,4) and C (-2, 4, 2) are collinear.
  2. The angle between lines whose direction ratios are (3,4, 5) and (4, -3, 5) is 30°.
  3. Angle between the lines 2x = 3y = —z and 6x = -y = -4z is 90°.
  4. Shortest distance between two intersecting lines always zero.
  5. Angle between the lines \(\frac { x+1 }{ 3 } \) = \(\frac { y+1 }{ 2 } \) = \(\frac { z+2 }{ 4 } \) and plane 2x + y – 3z + 5 = 0 is cos-1 (\(\frac { 4 }{ \sqrt { 406 } } \) )
  6. Straight line \(\frac { x-2 }{ 1 } \) = \(\frac { y+1 }{ -2 } \) = \(\frac { z-4 }{ 1 } \) is parllel to the plane x + 3y + 5z = 4
  7. Equation of plane parallel to the X – axis is ax + by + d = 0.

Answer:

  1. True
  2. False
  3. True
  4. True
  5. False
  6. True
  7. False.

Question 4.
Match the following:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 1
Answer:

  1. (c)
  2. (d)
  3. (a)
  4. (b)
  5. (e)

MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 2
Answer:

  1. (e)
  2. (c)
  3. (b)
  4. (f)
  5. (d)

MP Board Solutions

Question 5.
Write the answer in one word/sentence:

  1. Find the direction ratios of the normal of the plane x + 2y + 3z + 4 = 0.
  2. Find the equation of the plane which intercepts unit length from the coordinate axis.
  3. Find the equation of the plane which is perpendicular on FOZ-plane.
  4. Find the angle between the planes x + 2y + z + 7 = 0 and 2x + y – z + 13 = 0.
  5. Find the distance between the parallel planes 2x – 2y + z + 3= 0 and 4x – 4y + 2z.
  6. Find the angle between the lines \(\frac{x}{2}\) = \(\frac{y}{-1}\) = \(\frac{z}{1}\) and \(\frac{x}{1}\) = \(\frac{y}{1}\) = \(\frac{z}{2}\)
  7. If a line makes α, β, γ with the positive direction of the axis, then find the value of sin2α +sin2 β + sin2γ.

Answer:

  1. (1, 2, 3)
  2. x + y + z = 1
  3. by + cz + d = 0
  4. \(\frac { \pi }{ 3 } \)
  5. \(\frac{1}{6}\)
  6. \(\frac { \pi }{ 3 } \)
  7. 2

Three Dimensional Geometry Short Answer Type Questions

Question 1.
Find the direction cosine of the line joining two points (-2, 4, -5) and (1, 2, 3)? (NCERT)
Answer:
Given points A (- 2, 4, – 5) and B (1, 2, 3).
Direction ratio of AB = 1 + 2, 2 – 4, 3 + 5
= 3, -2, 8
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 3
Direction cosine of AB
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 4

Question 2.
Find direction cosines of the line which makes an angle 90°, 135° and 45° with X, Y and Z axis respectively? (NCERT)
Solution:
Given α = 90°, β = 135°, λ = 45°
cos α = cos 90° = 0
cos β = cos 135° = cos (180° – 45°)
= – cos 45° = – \(\frac { 1 }{ \sqrt { 2 } } \)
cos λ = cos 45° = \(\frac { 1 }{ \sqrt { 2 } } \)
Direction cosines are cos α, cos β, cos λ
i.e; 0, – \(\frac { 1 }{ \sqrt { 2 } } \), \(\frac { 1 }{ \sqrt { 2 } } \)

Question 3.
A line OP, makes the angle 120° and 60° with X – axis and Y – axis respectively find the angle made by line with Z – axis?
Solution:
Given α = 120°, β = 60°.
Let the angle made by the line with Z – axis be γ then
cos2α + cos2β + cos2 γ = 1
⇒ cos2 120° + cos2 60° + cos2 γ = 1
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 5
Hence, the required angle is 45° or 135°.

Question 4.
Show that the points (2, 3, 4), (-1, -2, 1) and (5, 8, 7) are collinear? (NCERT)
Solution:
Given Points are A (2, 3, 4), B (-1,-2, 1), C (5, 8, 7)
Direction ratio of AB x2 – x1, y2 – y1, z2 – z1
= – 1 – 2, – 2 – 3, 1 – 4
= – 3, – 5, – 3 = – (3, 5, 3)
Direction ratio of BC x2 – x1, y2 – y1, z2 – z1
= 5 + 1, 8 + 2, 7 – 1
= 6, 10, 6 = 2 (3, 5, 3)
It is clear that direction ratio of AB and BC are proportional, hence AB is parallel to BC but point B is common to both AB and BC therefore A, B, C are collinear. Proved.

Question 5.
If direction cosine of a line are cos α, cos β and cos γ then prove that:
cos 2α + cos 2β + cos 2γ = – 1.
Solution:
L.H.S. = cos2α + cos2β + cos2γ
= 2cos2α – 1 + 2cos2β – 1 + 2cos2γ – 1
= 2 (cos2α + cos2β + cos2γ) – 3
= 2 × 1 – 3, [∵ cos2α + 2β + cos2γ – 1]
= -1
= R.H.S. Proved.

MP Board Solutions

Question 6.
Prove that the line passing through the points (1, -1, 2) and (3, 4, -2) are perpendicular to the lines passing through the points (0, 3, 2) and (3, 5, 6). (NCERT)
Solution:
Direction ratio’s of the line joining points (1, -1, 2) and (3, 4, -2)
= 3 – 1, 4 + 1, – 2 – 2
= 2, 5, – 4 = a1, b1, c1 (let)
Direction ratios’s of the line joining the points (0, 3, 2) and (3, 5, 6)
= 3 – 0, 5 – 3, 6 – 2
= 3,2,4
= a2, b2, c2 (let)
Lines will be perpendicular if
a1a2 + b1b2 + c1c2 = 0
⇒ 2.3 + 5.2 – 4.4 = 0
⇒ 16 – 16 = 0
⇒ 0 = 0. Proved.

Question 7.
Prove that the line joining the points A (1, 2, 3) and B (2, 3, 5) are parallel to then line joining the points C (-1, 2, -3) and D ( 1, 4, 1)?
Solution:
Direction ratio of line AB
= 2 – 1, 3 – 2, 5 – 3
= 1, 1, 2
= a1, b1, C1
Direction ratio of line CD
= 1 + 1, 4 – 2, 1 + 3
= 2, 2, 4
= a2, b2, c2
Where \(\frac { a_{ 1 } }{ a_{ 2 } } \) = \(\frac { b_{ 1 } }{ b_{ 2 } } \) = \(\frac { c_{ 1 } }{ c_{ 2 } } \)
= \(\frac{1}{2}\) = \(\frac{1}{2}\) = \(\frac{2}{4}\) or \(\frac{1}{2}\)
Hence line AB and CD are parallel. Proved.

MP Board Solutions

Question 8.
Find the angle between the lines \(\frac{x}{2}\) = \(\frac{y}{2}\) = \(\frac{z}{1}\) and \(\frac{x – 5}{4}\) = \(\frac{y – 2}{1}\) = \(\frac{z – 3}{8}\)? (NCERT)
Solution:
Equation of the lines are
\(\frac{x}{2}\) = \(\frac{y}{2}\) = \(\frac{z}{1}\)
and \(\frac{x – 5}{4}\) = \(\frac{y – 2}{1}\) = \(\frac{z – 3}{8}\)
a1 = 2, b1 = 2, c1 = 1
a2 = 4, b2 = 1, c2 = 8
Let the angle between them = θ
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 6

Question 9.
Prove that lines
\(\frac{x – 5}{7}\) = \(\frac{y + 2}{- 5}\) = \(\frac{z}{1}\) and \(\frac{x}{1}\) = \(\frac{y}{2}\) = \(\frac{z}{3}\) are perpendicular? (NCERT)
Solution:
\(\frac{x – 5}{7}\) = \(\frac{y + 2}{- 5}\) = \(\frac{z}{1}\)
and \(\frac{x}{1}\) = \(\frac{y}{2}\) = \(\frac{z}{3}\)
Where a1 = 7, b1 = -5, c1 = 1
a2 = 1, b2 = 2, c2 = 3
a1a2 + b1b2 + c1c2 = 7(1) + (- 5)(2) + 1 × 3
= 10 -10 = 0
Hence, the lines are perpendicular. Proved.

MP Board Solutions

Question 10.
Find the cartesion equation of the line which passes through the point (-2, 4, -5) and parallel to the line given by \(\frac { x+3 }{ 3 } \) = \(\frac { y-4 }{ 5 } \) = \(\frac { z+8 }{ 8 } \). (NCERT)
Solution:
Equation of given line
\(\frac { x+3 }{ 3 } \) = \(\frac { y-4 }{ 5 } \) = \(\frac { z+8 }{ 8 } \) ………. (1)
Direction ratio of (1) is 3, 5, 8
Equation of line passing through point (- 2, 4, -5)
\(\frac { x+2 }{ a } \) = \(\frac { y-4 }{ b } \) = \(\frac { z+5 }{ c } \) ……………….. (2)
Direction ratio of eqn. (2) is a, b, c
Eqns. (1) and (2) are parallel
∴\(\frac{a}{3}\) = \(\frac{b}{5}\) = \(\frac{c}{8}\) = k
a = 3k, b = 5k, c = 8k
Putting the value of a, b, c in eqn. (2) we get
\(\frac { x+2 }{ 3k } \) = \(\frac { y-4 }{ 5k } \) = \(\frac { z+5 }{ 8k } \)
\(\frac { x+2 }{ 3 } \) = \(\frac { y-4 }{ 5 } \) = \(\frac { z+5 }{ 8 } \).

Question 11.
Find the eqution of straight line passing through point (1, 2, 3) are parallel to \(\frac{x-6}{12}\) = \(\frac{y-2}{4}\) = \(\frac{z+7}{5}\)?
Solution:
Equation of line passing through point (x1, y1, z1) and direction ratio a, b, c is
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 7

Question 12.
Find the angle between the lines \(\frac{x}{1}\) = \(\frac{y}{0}\) = \(\frac{z}{3}\) and \(\frac{x}{4}\) = \(\frac{y}{5}\) = \(\frac{z}{0}\)?
Solution:
Equation of given lines
\(\frac{x}{1}\) = \(\frac{y}{0}\) = \(\frac{z}{3}\) …………………. (1)
and \(\frac{x}{4}\) = \(\frac{y}{5}\) = \(\frac{z}{0}\) ……………………… (2)
Where a1 = 1, b1 = 0, c1 = 3 and a2 = 4, b2 = 5, c2 = 0
Let θ be the angle between eqns. (1) and (2)
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 8

Question 13.
Find the condition that the lines x = ay + b, z = cy + d and x = a’y + b’, z = c’y + d’ are perpendicular?
Solution:
x = ay + b and z = cy + 4
⇒ \(\frac { x-b }{ a } \) = \(\frac { y }{ 1 } \) and \(\frac { z-d }{ c } \) = \(\frac { y }{ 1 } \)
Hence the corresponding equation
\(\frac { x-b }{ a } \) = \(\frac { y }{ 1 } \) = \(\frac { z-d }{ c } \) ………………….. (1)
Again x = a’y + b’ and z = c’y + d’ equation is
\(\frac { x-b^{ ‘ } }{ a^{ ‘ } } \) = \(\frac { y }{ 1 } \) = \(\frac { z-d^{ ‘ } }{ c^{ ‘ } } \) ………………… (2)
Eqns. (1) and (2) are perpendicular.
a × a’ + 1 × 1 + c × c’ = 0
⇒ aa’ + cc’ + 1 = 0 is the required condition.

MP Board Solutions

Question 14.
(A) Find the angle between the lines \(\vec { r } \) = ( \(\hat { i } \) + 3\(\hat { j } \) + 5\(\hat { k } \) ) + t ( \(\hat { i } \) – 2\(\hat { j } \) – 3\(\hat { k } \) ) and \(\vec { r } \) = ( \(\hat { i } \) – 2\(\hat { j } \) + 5\(\hat { k } \) ) + s(2\(\hat { i } \) – 2\(\hat { j } \) + \(\hat { k } \) )?
Solution:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 9

(B) Find the angle between lines \(\vec { r } \) = (3\(\hat { i } \) + 4\(\hat { j } \) – 2\(\hat { k } \) ) + t(-\(\hat { i } \) + 2\(\hat { j } \) + \(\hat { k } \) ) and \(\vec { r } \) = ( \(\hat { i } \) – 7\(\hat { j } \) – 2\(\hat { k } \) ) + s( \(\hat { i } \) + 3\(\hat { j } \) + 2\(\hat { k } \) )
Solution:
Solve like Q. 14. (A)

Question 15.
Find angle between two planes 2x – y + z = 6 and x + y + 2z = 7?
Solution:
Given planes are:
2x – y + z = 6 ……………. (1)
and x + y + 2z = 7 ………………… (2)
Direction ratio of eqn. (1) = 2, -1, 1 1 ⇒ A1, B1, C1
Direction ratio of eqn. (2) = 1, 1, 2 ⇒ A2, B2, C2
Let θ be the angle between them
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 10

Question 16.
(A) If plane 3x – 6y – 2z = 7 and 2x + y – kz = 5 are perpendicular to each other. Find the value of k?
Solution:
Equation of given planes are
3x – 6y – 2z = 7 ………………………… (1)
and 2x + y – kz = 5 …………………… (2)
Where a1 = 3, b1 = -6, c1 = -2, and a2 = 2, b2 = 1, c2 = -k
Planes (1) and (2) are perpendicular
∴ a1a2 + b1b2 + c1c2 = 0
⇒ (3) (2) + (-6) (1) + (-2) (-k) = 0
⇒ 6 – 6 + 2k = 0
⇒ 2k = 0
⇒ k = 0.

MP Board Solutions

(B) For which value of k the planes 2x + ky + z + 9 = 0 and 5x + 3y – 4z – 6 = 0 are perpendicular?
Solution:
Solve like Q.16 (A)
[Answer: k = -2]

(C) Prove that the planes x + 2y + 3z = 6 and 5x – 3y + z = 1 are perpendicular?
Solution:
Given equation of planes are:
x + 2y + 3z = 6 ……………………. (1)
and 3x – 3y + z = 1 ……………………… (2)
Direction ratio of eqn. (1) = 1, 2, 3
Direction ratio of eqn. (2) = 3,- 3, 1
∴ a1a2 + b1b2 + c1c2 = (1)(3) + 2(-3) + (3)(1)
= 3 – 6 + 3 = 0
Hence planes (1) and (2) are perpendicular. Proved.

Question 17.
A plane meets the co – ordinate axes at points A, B and C. If the centroid of ∆ABC is (2, – 1, 3) then find the equation of the plane?
Solution:
Let A(a, 0, 0), B(0, b, 0), C(0, 0, c)
∵ OA = a, OB = b, OC = c
Centroid (given) is (2,- 1, 3)
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 11
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 11a

Question 18.
A plane meets the coordinate axes in A, B, C such that the centroid of ∆ABC is (a, b, c). Find the equation of the plane is \(\frac{x}{a}\) + \(\frac{y}{b}\) + \(\frac{z}{c}\) = 3?
Solution:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 12

Question 19.
Find the equation of plane which is parallel to the plane 2x + 3y – z = 8 and passes through the point (1,  2, 3)?
Solution:
Any plane parallel to the plane
2x + 3y – z = 8
⇒ 2x + 3y – z + λ = 0 ………………….. (1)
∵ It passes through the point (1,2, 3), then
2(1) + 3(2) – 3 + λ = 0
⇒ 2 + 6 – 3 + λ = 0
⇒ 8 – 3 + λ = 0
⇒ 5 + λ = 0
⇒ λ = -5 ……………………… (2)
∴ From eqns. (1) and (2), we have
2x + 3y – 5 = 0.

MP Board Solutions

Question 20.
Find the direction cosines of normal to the plane 2x + 4y + 4z = 9?
Solution:
Equation of given plane is:
2x + 4y + 4z = 9 …………………… (1)
The direction ratios of normal to the given plane are 2, 4, 4
Hence the direction cosines of the normal are
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 13

Question 21.
Find the equation of plane on which the length of perpendicular drawn from origin is 5 unit and the direction cosines of normal to it are \(\frac { 1 }{ \sqrt { 3 } } \), \(\frac { 1 }{ \sqrt { 3 } } \), – \(\frac { 1 }{ \sqrt { 3 } } \)?
Solution:
Equation of plane in normal form
lx + my + nz = p
Given: l = \(\frac { 1 }{ \sqrt { 3 } } \), m = \(\frac { 1 }{ \sqrt { 3 } } \), n = – \(\frac { 1 }{ \sqrt { 3 } } \), p = 5
Putting in eqn. (1),
\(\frac { 1 }{ \sqrt { 3 } } \) x + \(\frac { 1 }{ \sqrt { 3 } } \) y – \(\frac { 1 }{ \sqrt { 3 } } \) z = 5
⇒ x + y – z = 5\(\sqrt{3}\)

Question 22.
Find the equation of plane on which length of perpendicular drawn from origin is 4 units and whose direction cosines are in proportional to 2, -3, 6?
Solution:
Let the equation of plane
lx + my + nz = p
Given:
p = 4, a = 2, b = -3, c = 6
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 14
Putting in eqn. (1),
\(\frac{2}{7}\) x – \(\frac{3}{7}\) y + \(\frac{6}{7}\) z = 4
⇒ 2x – 3y + 6z = 28.

Question 23.
Find the equation of plane on which length of perpendicular drawn from origin is 5 unit and the direction ratios of normal to the plane are 2, 3, 6.
Solution:
Solve as Q. No. 22.
[Answer: 2x + 3y + 6z = 35]

MP Board Solutions

Question 24.
Find the equation of the plane which passes through the point (1, – 2, 3) and perpendicular to line whose direction ratios are 2, 1, -1?
Solution:
We know that equation of the plane passing through a point (x1, y1, z1) is
a (x – x1) + b( y – y1) + c (z – z1) = 0
Where, a, b and c are the direction ratios of normal to the plane
Here the point (x1, y1, z1) is (1, -2, 3)
and the direction ratios a, b, c are 2, 1, -1. Therefore by eqn. (1) we get
2. (x – 1) + 1. ( y + 2) -1. (z – 3) = 0
⇒ 2x + y – z – 2 + 2 + 3 = 0
⇒ 2x + y – z + 3 = 0
Which is the required equation of the plane.
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 15

Question 25.
(A) Find the perpendicular distance of the plane 6x – 3y + 2z – 14 = 0 from origin?
Solution:
Equation of plane,
6x – 3y + 2z – 14 = 0
The length of perpendicular drawn from (0, 0, 0) to the plane
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 16

(B) Find the length of perpendicular drawn from (1, 2, 0) on the plane 4x + 3y + 12z + 16 = 0?
Solution:
Equation of plane,
4x + 3y + 12z + 16 = 0
The length of perpendicular drawn from (1, 2, 0) to the plane
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 17

(C) Find the length of perpendicular drawn from (7, 14, 5) to the plane 2x + 4y – z?
Solution:
Solve as Q.No. 25 (B)
Answer:
3\(\sqrt{21}\) unit.

Question 26.
Find the equation of plane which passes through the point (- 1, 2, 3) and parallel to the plane 3x + 4y – 5z = 52?
Solution:
The given plane is
3x + 4y – 5z = 52 …………………… (1)
A plane parallel to the given plane (1),
3x + 4y – 5z = λ ………………(2)
∵ Plane (2) passes through the point (-1, 2, 3)
∴ 3(-1) + 4(2) – 5(3) = λ
⇒ -3 + 8 – 15 = λ
⇒ -18 – 8 = λ
⇒ -10 = λ
∴ From eqn. (2), putting the value of λ
3x + 4y – 5z = -10
∴ The required plane is
3x + 4y – 5z + 10 = 0

MP Board Solutions

Question 27.
(A) Find the intercepts made by the plane 3x + 4y – 7z = 84 from the co – ordinate axes?
Solution:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 18

(B) Find the intercepts made by the plane 3x + 4y – 6z = 72 from the co – ordinate axes?
Solution:
Solve as Q. No. 27 (A).
[Answer: (24, 18, -12).]

Question 28.
Find the equation of plane parallel to the X – axis and cuts intercepts 5 and 7 from Y and Z – axis respectively?
Solution:
Let the equation of plane
\(\frac{x}{a}\) + \(\frac{y}{b}\) + \(\frac{z}{c}\) = 1
The plane (1) is parallel to X – axis
a = ∞
Given b = 5, c = 7
∴ \(\frac{x}{∞}\) + \(\frac{y}{5}\) + \(\frac{z}{7}\) = 1
⇒ \(\frac{y}{5}\) + \(\frac{z}{7}\) = 1 [∵\(\frac{x}{∞}\) = 0]
⇒ 7y + 5z = 35.

Question 29.
Find the equation of the plane passing through the points (0, 0, 0) and perpendicular to the planes x + 2y – z = 1 and 3x – 4y + z = – 5?
Solution:
Equation of the plane passing through point (0,0,0)
a(x – 0) + b(y – 0) + c(z – 0) = 0
⇒ ax + by + cz = 0 ………………………… (1)
Plane (1) is perpendicular to the given planes.
x + 2y – z = 1 and 3x – 4y + z = -5
a + 2b – c = 0 ………………….. (2)
3a – 4b + c = 0 ………………………….. (3)
Solving eqns. (2) and (3),
\(\frac { a }{ 2-4 } \) = \(\frac { -b }{ 1+3 } \) = \(\frac { c }{ -4-6 } \)
⇒ \(\frac { a }{ -2 } \) = \(\frac { -b }{ 4 } \) = \(\frac { c }{ -10 } \)
⇒ \(\frac{a}{1}\) = \(\frac{b}{2}\) = \(\frac{c}{5}\) = k (say)
∴ a = k, b = 2k and c = 5k, where k ≠ 0.
∴ From eqn. (1),
k [x + 2y + 5z] = 0
∴ x + 2y + 5z = 0.

MP Board Solutions

Question 30.
Find the equation of the plane parallel to X – axis and passes through the points (2, 3, -4) and (1, -1, 3)?
Solution:
Let the equation of the plane parallel to X – axis is
by + cz + d= 0 ………………………. (1)
It passes through the points (2, 3, – 4) and (1, -1, 3), then
3b – 4c + d = 0 ……………………….. (2)
and – b + 3c + d = o …………………….. (3)
Solving eqns. (2) and (3), we get
\(\frac { b }{ -4-3 } \) = \(\frac { c }{ -1-3 } \) = \(\frac { d }{ 9-4 } \)
⇒ \(\frac{b}{7}\) = \(\frac{c}{4}\) = \(\frac{d}{-5}\) = k (say)
∴ b = 7k, c = 4k, d = -5k
Put the values of b, c and d in eqn. (1), we get
7ky + 4kz – 5k = 0
⇒ 7y + 4z – 5 = 0
This is the required equation of the plane.

Question 31.
Prove that the distance between two parallel planes 2x – 2y + z + 3 = 0 and 4x – 4y + 2z + 5 = 0 is \(\frac{1}{6}\)?
Solution:
The equations of the plane are 4x – 4y + 2z + 5 = 0
2x – 2y + z + 3 = 0 ……………… (1)
and 4x – 4y + 2z + 5 = 0 ………….. (2)
The length of the perpendicular drawn from O (0, 0, 0) to the plane (1) is

MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 44
and the length of the perpendicular drawn from O (0, 0, 0) to the plane (2) is
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 20
∴ The required distance MN = P1 – P2
= 1 – \(\frac{5}{6}\) = \(\frac{6-5}{6}\) = \(\frac{1}{6}\). Proved.

Question 32.
(A) Find the equation of the plane passes through the intersecting line of the planes x + y + z – 6 = 0 and 2x + 3y + 4z + 5 = 0 and also through the point (1, 1, 1)?
Solution:
The given planes are
x + y + z – 6 = 0 …………………. (1)
and 2x + 3y + 4z + 5 = 0 ………………….. (2)
The equation of the plane passes through the intersecting line of the planes (1) and (2), is
(x – y + z – 6) + λ (2x + 3y + 4z + 5) = 0 ………………….. (3)
Because plane (3) passes through the point (1, 1, 1), then
(1 + 1 + 1 – 6) + (2 + 3 + 4 + 5) = 0
⇒ – 3 + λ (14) = 0
⇒ λ = \(\frac{3}{14}\)
Putting the value of λ in eqn.(3),
(x + y + z – 6) + \(\frac{3}{14}\) (2x + 3y + 4z + 5) = 0
⇒ 20x + 23y + 26z – 69 = 0.

(B) Find the equation of the plane passing through the intersecting line of the planes x + 2y + 3z = 5 and 2x – 4y + z = 3 and also through the point (0, 1, 0)?
Solution:
Solve as Q.No. 32. (A).
[Answer: 3x – 2y + 4z + 2 = 0.]

MP Board Solutions

Question 33.
(A) Find the vector equation of a plane passing through the point 2\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \) and perpendicular to the vector 6\(\hat { i } \) + 2\(\hat { j } \) – 3\(\hat { k } \)?
Solution:
Let the equation of plane be
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 21

(B) Find the vector equation of the plane which is at a distance 7 units from origin and perpendicular to the vector 4\(\hat { i } \) + 2\(\hat { j } \) – 3\(\hat { k } \)?
Solution:
Let the equation of plane be
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 22

(C) Find the distance of the point (2, – 1, 3) from the plane \(\vec { r } \). (3\(\hat { i } \) + 2\(\hat { j } \) – 6\(\hat { k } \) ) + 15 = 0?
Solution:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 23
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 23a

(D) Find the distance from the point (2\(\hat { i } \) – \(\hat { j } \) – 4\(\hat { k } \) ) to the plane \(\vec { r } \). (3\(\hat { i } \) – 4\(\hat { j } \) + 12\(\hat { k } \) ) = 19?
Solution:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 24

Question 34.
Find the angle between the planes \(\vec { r } \). (2\(\hat { i } \) – 3\(\hat { j } \) + 4\(\hat { k } \) ) = 1 and \(\vec { r } \) (- \(\hat { i } \) + \(\hat { j } \) ) = 4?
Solution:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 25
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 25a

Three Dimensional Geometry Long Answer Type Questions – I

Question 1.
Find the perpendicular distance of line \(\frac{x}{1}\) = \(\frac{y-1}{2}\) = \(\frac{z-2}{3}\) from the point (1, 6, 3)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 26

Question 2.
Find the distance between two parallel lines \(\frac { x-1 }{ 2 } \) = \(\frac { y-2 }{ 3 } \) = \(\frac { z-3 }{ 4 } \) and \(\frac { x-2 }{ 4 } \) = \(\frac { y-3 }{ 6 } \) = \(\frac { z-4 }{ 8 } \)?
Solution:
Given lines:
\(\frac { x-1 }{ 2 } \) = \(\frac { y-2 }{ 3 } \) = \(\frac { z-3 }{ 4 } \) …………………… (1)
and \(\frac { x-2 }{ 4 } \) = \(\frac { y-3 }{ 6 } \) = \(\frac { z-4 }{ 8 } \) ………………………… (2)
Any point P (1, 2, 3) lies on line (1). Now we find the length of perpendicular PM drawn from point P (1, 2, 3) to eqn. (2).
∵Eqn. (2) passes through point A (2, 3,4)
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 26
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 27a
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 27b

Question 3.
Find the equation plane passing through the line \(\frac { x-3 }{ 2 } \) = \(\frac { y+2 }{ 3 } \) = \(\frac { z-4 }{ -1 } \) and point (-6, 3, 2)?
Solution:
Let the equation of plane be
A(x – α) + B(y – β) + C(z – γ) = 0
Passes through line \(\frac { x-3 }{ 2 } \) = \(\frac { y+2 }{ 3 } \) = \(\frac { z-4 }{ -1 } \)
∴ A(x – 3) + B(y + 2) + C(z – 4) = 0 ………………………… (1)
Plane passes through point (-6, 3, 2)
∴ A(-6 – 3) + B(3 + 2) + C(2 – 4) = 0
⇒ -9A + 5B – 2C = 0
⇒ 9A – 5B + 2C = 0 …………………………… (2)
Direction ratio of plane →A, B, C
2A + 3B – C = 0
Solving eqns. (2) and (3)
9A – 5B + 2C = 0
2A + 3B – C = 0
\(\frac { A }{ 5-6 } \) = \(\frac { B }{ 4+9 } \) = \(\frac { C }{ 27+10 } \)
⇒ \(\frac { A }{ -1 } \) = \(\frac { B }{ 13 } \) = \(\frac { C }{ 37 } \)
Putting in eqn. (1)
-1(x – 3) + 13(y + 2) + 37(z – 4) = 0
⇒ -x + 3 + 13y + 26 + 37z – 148 = 0
⇒ -x + 13y + 37z – 119 = 0
⇒ x – 13y – 37z + 119 = 0.

MP Board Solutions

Question 4.
Find the shortest distance between the straight lines \(\frac { x-3 }{ 3 } \) = \(\frac { y-8 }{ -1 } \) = \(\frac { z-3 }{ 1 } \) and \(\frac { x
+3 }{ -3 } \) = \(\frac { y+7 }{ 2 } \) = \(\frac { z-6 }{ 4 } \)?
Solution:
Here, x1 = 3, y1 = 8, z1 = 3, x2 = -3, y2 = -7, z2 = 6
a1 = 3, b1 = -1, c1 = 1, a2 = -3, b2 = 2, c2 = 4
Given lines are
\(\frac { x-3 }{ 3 } \) = \(\frac { y-8 }{ -1 } \) = \(\frac { z-3 }{ 1 } \) and \(\frac { x+3 }{ -3 } \) = \(\frac { y+7 }{ 2 } \) = \(\frac { z-6 }{ 4 } \)
We know that the shortest distance between 2 lines \(\frac { x-x_{ 1 } }{ a_{ 1 } } \) = \(\frac { y-y_{ 1 } }{ b_{ 1 } } \) = \(\frac { z-z_{ 1 } }{ c_{ 1 } } \) and \(\frac { x-x_{ 2 } }{ a_{ 2 } } \) = \(\frac { y-y_{ 2 } }{ b_{ 2 } } \) = \(\frac { z-z_{ 2 } }{ c_{ 2 } } \) is
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 28

Question 5.
Find the coordinates of point of intersection of the lines \(\frac { x-1 }{ 2 } \) = \(\frac { y-2 }{ 3 } \) = \(\frac { z-3 }{ 4 } \) and \(\frac { x-2 }{ 3 } \) = \(\frac { y-3 }{ 4 } \) = \(\frac { z-4 }{ 5 } \)?
Solution:
Let \(\frac { x-1 }{ 2 } \) = \(\frac { y-2 }{ 3 } \) = \(\frac { z-3 }{ 4 } \) = r
∴ x = 2r + 1, y = 3r + 2, z = 4r + 3
Suppose the above point is intersection point then it will satisfy line
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 29
Put in eqn.(1), we get
x = 2(-1) + 1, y = 3(-1) + 2, z = 4(-1) + 3
x = -1, y = -1, z = -1
∴ Intersection point (-1, -1, -1).

Question 6.
Find the coordinates of point of intersection of the lines x – 3 = \(\frac { y+4 }{ -3 } \) = \(\frac { z-5 }{ 3 } \) and x – 4 = \(\frac { y-5 }{ 3 } \) = \(\frac { z+6 }{ -4 } \)?
Solution:
Given lines are \(\frac { x-3 }{ 1 } \) = \(\frac { y+4 }{ -3 } \) = \(\frac { z-5 }{ 3 } \) ……………….. (1)
and \(\frac { x-4 }{ 1 } \) = \(\frac { y-5 }{ 3 } \) = \(\frac { z+6 }{ -4 } \) ……………………… (2)
x1 = 3, y1 = -4, z1 = 5, l1 = 1, m1 = -3, n1 = 3
x2 = 4, y2 = 5, z2 = -6, l2 = 1, m2 = 3, n2 = -4
If lines (1) and (2) are intersect, then
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 30
⇒ 1(12 – 9) -1(-36 + 33) + 1(27 – 33) = 0
⇒ 3 + 3 – 6 = 0
⇒ 0 = 0
Hence the lines (1) and (2) are intersect
Again let \(\frac { x-3 }{ 1 } \) = \(\frac { y+4 }{ 3 } \) = \(\frac { z-5 }{ 3 } \) = r
∴ x = r + 3, y = -3r – 4, z = 3r + 5 ……………………………… (3)
Suppose above point is point of intersection hence it will satisfy eqn. (2)
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 31
Putting r = -1 in eqn. (3),
We get x = -1 + 3, y = -3(-1) – 4, z = 3(-1) + 5
x = 2, y = -1, z = 2
∴Intersection point (2, -1, 2).

Question 7.
Find the shortest distance between the lines:
\(\vec { r } \) = \(\hat { i } \) + 2\(\hat { j} \) + 3\(\hat { k } \) + t(2\(\hat { i } \) + 3\(\hat { j } \) + 4\(\hat { k } \) ) and \(\vec { r } \) = 2\(\hat { i } \) + 4\(\hat { j } \) + 5\(\hat { k } \) + s(3\(\hat { i } \) + 4\(\hat { j } \) + 5\(\hat { k } \) )?
Solution:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 32
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 32a

Question 8.
Prove that the lines \(\vec { r } \) = ( \(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \) ) + λ(3\(\hat { i } \) r =(3\(\hat { i } \) – \(\hat { j } \) ) and \(\vec { r } \)  = (4\(\hat { i } \) – \(\hat { k } \) ) + μ (2\(\hat { i } \) + 3\(\hat { k } \) are intersect to each other. Also And the point of intersection?
Solution:
Given lines are
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 33
Equating the above lines (1) and (2)
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 34
and two lines intersect each other, if
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 35
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 35a
1 + 3λ = 4 + 2μ …………….. (3)
1 – λ = 0 ………………….. (4)
and -1 = 3μ – 1 ………………… (5)
From eqn. (4) we get
1 – λ = 0 ⇒ λ = 1
From eqn.(5) we get λ and μ in eqns. (1) and (2) respectively, we get
μ = 0
The above values of
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 35b

Question 9.
(A) Find the shortest distance between the lines:
\(\vec { r } \) = (3 – t) \(\hat { i } \) + (4 + 2t) \(\hat { j } \) + (t – 2) \(\hat { k } \)
and \(\vec { r } \) = (1 + s) \(\hat { i } \) + (3s – 7) \(\hat { j } \) + (2s – 2) \(\hat { k } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 36
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 36a
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 45

(B) Find the shortest distance between the lines:
\(\vec { r } \) = (λ – 1) \(\hat { i } \) + (λ + 1) \(\hat { j } \) + (1 + λ) \(\hat { k } \)
\(\vec { r } \) = (1 – µ) \(\hat { i } \) + (2µ – 1) \(\hat { j } \) + (µ + 2) \(\hat { k } \)?
Solution:
Solve as Q.No. 9(A)
[Answer: S.D. = \(\frac { 5 }{ \sqrt { 2 } } \) ]

(C) Find the shortest distance between the lines whose vector equations are
\(\vec { r } \) = (1 + 2λ) \(\hat { i } \) + (2 + 3λ) \(\hat { j } \) + (3 + 4λ) \(\hat { k } \)
\(\vec { r } \) = (2 + 3µ) \(\hat { i } \) + (3 + 4µ) \(\hat { j } \) + (4 + 5µ) \(\hat { k } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 37
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 37a
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 37b

Question 10.
Find the equation of plane passing through the line of intersection of the planes x + 3y + 4z – 5 = 0 and 3x – 4y + 9z – 10 = 0 and perpendicular to the plane x + 2y = 0?
Solution:
Given equation of planes are
x + 3y + 4z – 5 = 0 ………………….. (1)
and 3x – 4y + 9z – 10 = 0 ………………………. (2)
The plane passing through the line of intersection of the planes (1) and (2)
(x + 3y + 4z – 5) + λ(3x – 4y + 9z – 10) = 0
⇒ (1 + 3λ) x + (3 – 4λ) y + (4 + 9λ) z – 5 – 10λ = 0 ………………… (3)
Again, given plane is
x + 2y = 0 ……………………… (4)
Plane (3) is perpendicular to the plane (4)
(1 + 3λ).1 + (3 – 4λ).2 + (4 + 9λ). 0 = 0
⇒ 1 + 3λ + 6 – 8λ = 0
⇒ λ = \(\frac{7}{5}\)
Putting the value of X in eqn. (3),
(x + 3y + 4z – 5) + \(\frac{7}{5}\) (3x – 4y + 9z – 10) = 0
⇒ 26x – 13y + 83z = 95.

MP Board Solutions

Question 11.
Find the equation of planes which are parallel to the plane x – 2y + 2z = 3 and whose perpendicular distance from the point (1, 2, 3) is 1?
Solution:
The planes parallel to the given plane x – 2y + 2z = 3 is
x – 2y + 2z + λ = 0 ………………….. (1)
Perpendicular distance from the point (1, 2, 3) to the above plane is
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 38
Then substitute the value of 2 in eqn. (1), we have
x – 2y + 2z = 0, x – 2y + 2z = 6

Question 12.
(A) Find the equation of the plane passing through the points (1,-2, 4) and (3, -4, 5) and perpendicular to the plane x + y – 2z = 6?
Solution:
Equation of the plane passing through the point (1, -2, 4) is
A(x – 1) + B(y + 2) + C(z – 4) = 0 ………………………. (1)
It also passes through the point (3, -4, 5)
A(3 – 1) + 5(-4 + 2) + C(5 – 4) = 0
⇒ 2A – 2B + C = 0 …………………………. (2)
The given equation of plane is
x + y – 2z = 6 ……………………. (3)
The planes (1) and (3) are perpendicular
A + B – 2C = 0 ……………………. (4)
On solving by cross multiplication method, we get
\(\frac { A }{ 4-1 } \) = \(\frac { B }{ 1+4 } \) = \(\frac { C }{ 2+2 } \)
⇒ \(\frac{A}{3}\) = \(\frac{B}{5}\) = \(\frac{C}{4}\) = k
∴ A = 3k, B = 5k, C = 4k
Putting these values of A, B and C in eqn. (1), we get
⇒ 3k(x – 1) + 5k(y + 2) + 4k(z – 4) = 0
⇒ 3x – 3 + 5y + 10 + 4z – 16 = 0
⇒ 3x + 5y + 4z – 9 = 0.

(B) Find the equation of plane passing through the points (1, 1,-1) and (1, 1,-1) and perpendicular to the planes x + 2y + 2z = 9?
Solution:
Solve as Q.No. 12.(A)
[Answer: 2x + 2y – 3z + 3 = 0]

MP Board Solutions

Question 13.
(A) Find the equation of plane passing through (1, 1, -1) and perpendicular to the planes x + 2y + 3z = 0 and 2x – 3y + 4z = 0?
Solution:
Let the equation of planes
A(x – x1) + B(y – y1) + C(z – z1) = 0
It passes through (1, 1, -1)
A(x – 1) + B(y – 1) + C(z + 1) = 0 …………………. (1)
Given planes are
x + 2y + 3z = 0 …………………… (2)
2x – 3y + 4z = 0 ………………………. (3)
The plane (1) is perpendicular to eqns. (2) and (3),
∴ 1A + 2B + 3C = 0
and 2A – 3B + 4C = 0
Solving \(\frac { A }{ 8+9 } \) = \(\frac { B }{ 6-4 } \) = \(\frac { C }{ -3-4 } \)
⇒ \(\frac{A}{17}\) = \(\frac{B}{2}\) = \(\frac{C}{-7}\) = k
∴ A = 17k, B = 2k, C = -7k
By eqn. (1),
17k (x – 1) + 2k (y – 1) – 7k (z + 1) = 0
⇒ 17x + 2y – 7z – 26 = 0.

(B) Find the equation of plane passing through (2, 1, 4) and perpendicular to the planes 9x – 7y + 6z + 48 = 0 and x + y – z = 0?
Solution:
Solve as Q.No. 13 (A)
[Answer: x + 15y + 16z = 81]

Question 14.
Find the equation of the plane passing through the points (2, 2, -1), (3, 4, 2) and (7, 0, 6)?
Solution:
Equation of Plane passing through the points (2, 2, -1) is
A(x – 2) + B(y – 2) + C(z + 1) = 0 ………………….. (1)
Since plane given by eqn. (1) passes through the points (3,4, 2) and (7, 0, 6)
Hence it will satisfy eqn. (2),
We get A(3 – 2) + B(4 – 2) + C(2 + 1) = 0
A + 2B + 3C = 0 ………………………. (2)
and A(7 – 2) + B(0 – 2) + C(6 + 1) = 0
5A – 2B + 7C = 0 …………………….. (3)
Solving eqns. (2) and (3),
img 39
\(\frac { A }{ 14+6 } \) = \(\frac { B }{ 15-7 } \) = \(\frac { C }{ -2-10 } \)
\(\frac { A }{ 20 } \) = \(\frac { B }{ 15-7 } \) = \(\frac { C }{ -2-10 } \)
\(\frac { A }{ 20 } \) = \(\frac { B }{ 8 } \) = \(\frac { C }{ -12 } \)
Let \(\frac { A }{ 5 } \) = \(\frac { B }{ 2 } \) = \(\frac { C }{ -3 } \) = k
A = 5k, B = 2k, C = -3k
Let \(\frac{A}{5}\) = \(\frac{B}{2}\) = \(\frac{C}{-3}\) = k
A = 5k, B = 2k, C = -3k
Putting in eqn.(1),
We get 5k(x – 2) + 2k(y – 2) + (-3k) (z + 1) = 0
k (5x + 2y – 3z – 17) = 0
5x + 2y – 3z – 17 = 0.

MP Board Solutions

Question 15.
prove that the points (0, -1, -1), (4, 5, 1), (3, 9, 4) and (-4, 4, 4) are coplanar?
Solution:
Equation of plane passing through the points (0, -1, -1)
A(x – 0) + B(y + l) + C(z + 1) = 0 ………………………… (1)
It passes through the point (4, 5, 1)
A(4 – 0) + B(5 +1) + C(1 +1) = 0
⇒ 4A + 6B + 2C = 0
⇒ 2A + 3B + C = 0 ………………………………. (2)
Eqn. (1) also passes through (3, 9, 4),
A(3 – 0) + B(9 + 1) + C(4 + 1) = 0
⇒ 3A + 10B + 5C = 0 …………………………. (3)
Solving eqns. (2) and (3),
\(\frac { A }{ 15-10 } \) = \(\frac { B }{ 3-10 } \) = \(\frac { C }{ 20-9 } \) = k (let)
⇒\(\frac { A }{ 5 } \) = \(\frac { B }{ -7 } \) = \(\frac { C }{ 11 } \) = k
⇒ A = 5k, B = -7k, C = 11k
Putting in eqn. (1),
5k – 7k (y + 1) + 11k (z + 1) = 0
⇒ k(5x – 7y + 11z + 4) = 0
⇒ 5x – 7y + 11z + 4 = 0 ………………………… (4)
If the plane also passes through the point (-4, 4, 4) will satisfies eqn. (4),
5(- 4) – 7(4) + 11 (4) + 4 = 0
⇒ -20 – 28 + 44 + 4 = 0
⇒ 0 = 0
Hence given points are coplanar. Proved.

Question 16.
A variable plane \(\frac{x}{a}\) + \(\frac{y}{b}\) + \(\frac{z}{c}\) = 1 is at a distance 1 unit from origin. It cuts co – ordinate axes at A, B, C. The centroid (x, y, z) satisfies the equation \(\frac { 1 }{ x^{ 2 } } \) + \(\frac { 1 }{ y^{ 2 } } \) + \(\frac { 1 }{ z^{ 2 } } \) = k? Find the value of k?
Solution:
Given equation of plane \(\frac{x}{a}\) + \(\frac{y}{b}\) + \(\frac{z}{c}\) = 1
OA = a, OB = b, OC = c
The coordinates of the point A, B, C are (a, 0, 0), (0, b, 0) and (0, 0, c).
The length of perpendicular drawn from origin to the plane (1) is 1.
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 40
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 40a

Question 17.
Find the equation of plane passing through the line of intersection of the planes x + 2y + 3z = 4 and 2x + y – z + 5 = 0 and perpendicular to the plane 5x + 3y + 6z + 8 = 0?
Solution:
Given planes
x + 2y + 3z = 4 ………………….. (1)
2x + y – z + 5 = 0 ………………… (2)
Equation of plane passing through the line of intersection of the planes (1) and (2)
x + 2y + 3z – 4 + λ(2x + y – z + 5) = 0 …………………. (3)
⇒ (1 + 2λ)x + (2 + λ)y + (3 – λ)z = 0
⇒ 10λ + 3λ – 6λ + 5 + 6 + 18 = 0
⇒ 7λ + 29 = 0
⇒ λ = \(\frac{-29}{7}\)
Putting the value of A in eqn. (3),
x + 2y + 3z – 4 – \(\frac{-29}{7}\) (2x + y – z + 5) = 0
⇒ 7x + 14y + 21z – 28 – 58x – 29y + 29z – 145 = 0
⇒ -51x – 15y + 50z – 173 = 0
⇒ 51x + 15y – 50z + 173 = 0.

MP Board Solutions

Question 18.
Find the equation of plane passes through the line \(\frac { x-3 }{ 2 } \) = \(\frac { y+2 }{ 9 } \) = \(\frac { z-4 }{ -1 } \) and point (-6, 3, 2)?
Solution:
Point on given line D (3, -2,4)
∴ Eqn. of plane passing through point (3, -2, 4) is
A(x – 3) + B(y + 2) + C(z – 4) = 0 ……………………….. (1)
Plane (1) passes through point (-6, 3, 2),
– 9A + 5B – 2C = 0 …………………………. (2)
Direction ratio’s of given line is 2, 9, -1 and is parallel to plane (1),
2A + 9B – C = 0 ………………………. (3)
Now,
– 9A + 5B – 2C = 0
2A + 9B – C = 0
\(\frac { A }{ -5+18 } \) = \(\frac { B }{ -4-9 } \) = \(\frac { C }{ -81-10 } \)
⇒ \(\frac { A }{ 13 } \) = \(\frac { B }{ -13 } \) = \(\frac { C }{ -91 } \) = k
⇒ \(\frac { A }{ 1 } \) = \(\frac { B }{ -1 } \) = \(\frac { C }{ -7 } \) = k
A = k, B = -k, C = – 7k
Putting in eqn.(1), we get,
k(x – 3) – k (y + 2) – 7k(z – 4) = 0
⇒ x – y – 7z – 3 – 2 + 28 = 0
⇒ x – y – 7z + 23 = 0.

Question 19.
Find the vector equation of the line passing through (1,2,3) and parallel to the planes \(\vec { r } \). ( \(\hat { i } \) – \(\hat { j } \) + 2\(\hat { k } \) = 5 and \(\vec { r } \).(3\(\hat { i } \) + \(\hat { j } \) + \(\hat { k } \) ) = 6? (NCERT)
Solution:
Equation of line is:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 41
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 41a

Question 20.
Find the vector equation of the line passing through the point (1, 2, -4) and perpendicular to the two lines
\(\frac { x-8 }{ 3 } \) = \(\frac { y+19 }{ -16 } \) = \(\frac { z-10 }{ 7 } \) and \(\frac { x-8 }{ 3 } \) = \(\frac { y-20 }{ 8 } \) = \(\frac { z-5 }{ -5 } \)? (NCERT)
Solution:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 42
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 42a

Question 21.
A line makes angles α, β, γ and and with four diagonals of a cube then prove that:
cos2α + cos2β + cos2 = \(\frac{4}{3}\)
Solution:
Taking three adjacent edges OA, OB, OC of the cube of side a as coordinate the coordinates of vertices of the cube are :
0 (0,0,0), A (a,0,0), B (0,a,0), R (0,0,a),
D (a,a,0), K (a,0,a), L (0,a,a), P (a,a,a)
Direction ratio of diagonal are a – 0, a – 0, a – 0, a, a, a direction cosines of OP are:
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 43
MP Board Class 12th Maths Important Questions Chapter 11 Three Dimensional Geometry IMG 43a

MP Board Class 12 Maths Important Questions

MP Board Class 12th Physics Important Questions Chapter 13 Nuclei

MP Board Class 12th Physics Important Questions Chapter 13 Nuclei

Nuclei Important Questions 

Nuclei Objective Type Questions

Question 1.
Choose the correct answer of the following:

Question 1.
The relation between half life time Tm and decay constant of a radioactive material is:
MP Board 12th Physics Important Questions Chapter 13 Nuclei 1
Answer:
MP Board 12th Physics Important Questions Chapter 13 Nuclei 2

Question 2.
The decayed part of a radioactive sample in two half lives will be :
(a) One fourth
(b) Half
(c) Three fourth
(d) Full part
Answer:
(c) Three fourth

Question 3.
The α – particle is a :
(a) Hydrogen nucleus
(b) Deuterium nucleus
(c) Helium nucleus
(d) Tritium.
Answer:
(c) Helium nucleus

MP Board Solutions

Question 4.
The value of A and Z in the nuclear reaction \(_{ 238 }^{ 92 }{ U }\) → \(_{ A }^{ Z }{ Th }\) + \(_{ 4 }^{ 2}{ He }\) will be :
(a) 234,94
(b) 234,90
(c) 238,94
(d) 238,90.
Answer:
(b) 234,90

Question 5.
The source of energy in the sun is :
(a) Nuclear fission
(b) Nuclear fusion
(c) Chemical reaction
(d) Photo electric reaction.
Answer:
(b) Nuclear fusion

Question 6.
For the nuclear fusion which of the following is suitable :
(a) Heavy nucleus
(b) Lighter nucleus
(c) Atom bomb
(d) Radio active decay.
Answer:
(b) Lighter nucleus

Question 7.
In the symbol of nucleus \(_{ Z }^{ A }{ X }\) there are :
(a) Z – neutrons, (A – Z) protons
(b) Z – protons, (A – Z) neutrons
(c) Z – protons, A neutrons
(d) A protons. Z neutrons.
Answer:
(b) Z – protons, (A – Z) neutrons

Question 8.
In the gamma ray emission of a nucleus :
(a) Only proton number varies
(b) Number of neutrons and protons both varies
(c) There is no change in number of protons and neutrons
(d) Only number of neutrons varies.
Answer:
(c) There is no change in number of protons and neutrons

Question 2.
Fill in the blanks :

  1. In the controlled chain reaction the fast moving neutrons are slowed down by using moderator. These neutrons are called …………..
  2. The Einstein’s mass energy equivalence relation is …………..
  3. The unstable nucleus obtained by artificial radioactivity is called …………..
  4. The mass of neutrons in a nucleus is nearly equal to mass of …………..
  5. In the process of ………….. the lighter nuclei together makes a heavy nucleus.
  6. In nuclear reactor the heavy water is used as …………..
  7. The SI unit of radio activity is …………..
  8. In the range mass number A = 30 to A = 170 the value of ………….. is nearly constant.

Answer:

  1. Thermal neutrons
  2. E = me2
  3. Radio active isotopes
  4. Protons
  5. Fusion
  6. Moderator
  7. Becquerel (Bq)
  8. Per nucleon binding energy.

Question 3.
Match the columns :
MP Board 12th Physics Important Questions Chapter 13 Nuclei 3
Answer:

  1. (d)
  2. (e)
  3. (a)
  4. (c)
  5. (b)

Question 4.
Write the answer in one word/sentence :

  1. Write the equation showing the decay of free neutron.
  2. The energy distribution of P – rays is continuous. Why?
  3. In the α and β particles, which one has more ionization power?
  4. The ionization power of α – particles is high. Why?
  5. The penetrating power of γ(gamma) – rays is very high. Why?
  6. Write an equation showing nuclear fusion.
  7. Which part of the electromagnetic spectrum has highest penetrating power?
  8. What is order of size of nucleus?
  9. Does the density of all nuclei remain same? If yes then write its order.
  10. How is nuclear radius related to atomic mass?

Answer:

  1. 0n11H1 + -1B0 + \(\overline { ν }\)
  2. Because during the β – decay anti – neutrino is emitted
  3. α – particles
  4. Because α – particles have large mass and large size and their velocity is low
  5. Because their velocity is very high and they do not have any charge,
  6. 1H2 + 1H22He4 + Q
  7. γ – rays
  8. 10-15 m
  9. Yes, 1017 per cubic metre
  10. R = R0 A1/3

Nuclei Very Short Answer Type Questions

Question 1.
What will be the ratio of radii of two nucleus of mass number A1 and A2?
Solution:
From the formula
MP Board 12th Physics Important Questions Chapter 13 Nuclei 4

Question 2.
What will be the energy equivalent to 10 milligram?
Solution:
E = mc2
= 10 x 10-6 x (3 x 108)2
= 9 x 109 joule.

Question 3.
What are thermal neutrons?
Answer:
In the process of controlled nuclear fission, the fast moving neutrons are slowed down with the help of moderation. These slow stray neutrons are called as thermal neutrons.

Question 4.
Does the ratio of neutron and proton after emission of α – particle in a nucleus increase, decrease or remain constant?
Answer:
The ratio can increase, decrease or can remain same. It depends upon the nature of nucleus.

MP Board Solutions

Question 5.
Nuclear fusion is not possible in laboratory. Why?
Answer:
For nuclear fusion very high temperature (≈ 107K) and very high pressure is required which is not possible in laboratory.

Question 6.
Is a free neutron a stable particle?
Answer:
No, free neutron is decayed in a proton, an electron and an antineutrino (\(\overline { ν }\)).
0n11P1 + -1e0 + \(\overline { ν }\)

Question 7.
In heavy nucleus the number of neutrons is more than number of protons. Explain why?
Answer:
In a nucleus there is a coulomb’s repulsive force between protons in addition to a strong attraction nuclear force. On the other hand in case of neutrons, within the nucleus, there is only a short range attractive nuclear force. For heavy nuclei to be stable the repulsive force must be less. This is possible only if the number of neutrons is more than number of protons.

Question 8.
If a radioactive substance that is capable to emit a, p and y rays is kept on a piece of paper, then which rays has the maximum possibility to be stoped?
Answer:
As the mass of α – particles is more and its penetrating power is least, so it will be stopped.

Question 9.
Why is heavy water used as moderator in a nuclear reactor?
Answer:
Heavy water contains protons (of mass nearly equal to the mass of neutrons). Fast moving neutrons undergo elastic collision with these slow moving neutrons and thus get slowed down. Hence heavy water is used as moderator.

MP Board Solutions

Question 10.
An atom expressed by YXA emits n α – particles. How many proton will remain in it? What will be the new atomic number of new atom?
Answer:
In an α – particles there are 2 protons. If n α – particles are emitted then 2n proton will be reduced.
∴ No. of remaining protons = Z – 2n
Atomic number = Y – 2n.

Question 11.
Penetrating power of β – particles is more than that of α – particles but its penetrating power is less. Why?
Answer:
β – particles have small size and high velocity so its penetrating power is more than α – particles. Due to small size and high velocity the probability of collision with gas molecules decreases and hence ionization power becomes less.

Question 12.
The nuclear fusion could not be used as an experimental and controlled source of energy till now. Why?
Answer:
The nuclear fusion takes place at very high temperature. Due to such very high temperature it is not possible to control it.

Question 13.
Why is a neutron preferred as a bombarding particle in nuclear fission?
Answer:
Neutron is a neutral particle i.e., it has no charge. So it is neither repelled nor attracted by the nucleus and hence can penetrate deep into the nucleus to cause a nuclear reaction.

Question 14.
β – rays are emitted from nucleus. They are made of fast moving electron though there are no electrons in the nucleus. Why it is so?
Answer:
Nucleus has no electron in it. Actually due to decay of neutron into proton and electron, the β – rays (particle) are produced.
MP Board 12th Physics Important Questions Chapter 13 Nuclei 5

Question 15.
Justify that gamma rays have more penetrating power and α – particles have more ionizing power.
Answer:
Gamma rays are electromagnetic waves. Its speed is equal to the speed of light. So they can penetrate deeply into the matter i.e., their penetrating power is high, α – particles has high mass and posses greater kinetic energy. So when they collide with any atom, it transfer its energy to orbital electrons and they are ejected. Hence α – particles has high ionizing power.

MP Board Solutions

Question 16.
The mass number of two nucleus are 1 : 2. What is the ratio of their nuclear density?
Answer:
1 : 1 because nuclear density does not depend on mass number.

Question 17.
What is effect of temperature and pressure or radio activity?
Answer:
No, effect.

Question 18.
Due to the emission of α – particles does the ratio of neutron to proton decrease, increase or remains the same?
Answer:
The ratio \(\frac {n}{p}\) increases, because number of protons decreases by 2.

Nuclei Short Answer Type Questions

Question 1.
Which particles remains inside the nucleus? What will be the number of neutrons in the nucleus zXA?
Answer:
The neutrons and protons remains inside the nucleus. In the nucleus zXA number of neutrons be A – Z.

Question 2.
Define decay constant and mean life of a radioactive substance write their units.
Answer:
Decay Constant:
The decay constant is defined as the reciprocal of that time interval during which the number of active nuclei in a given sample of a radioactive substance reduces to times of the initial value of number of nuclei.
If T is half life time and X is decay constant then
T = \(\frac {0.6931}{λ}\)
Its unit is “per second”.

Mean life:
The reciprocal of decay constant is called mean life, its unit is ‘second’.

MP Board Solutions

Question 3.
What is radioactivity? Write the names of the rays emitted from radio – active substances.
Answer:
Radioactivity is that property by virtue of which the nucleus of a heavy element disintegrates itself with the emission of radiation without being forced by any external agent to do so.

Following rays are emitted from a radioactive substance :

  1. α – rays
  2. β – rays
  3. γ – rays.

Question 4.
A radioactive nucleus decays as given below :
MP Board 12th Physics Important Questions Chapter 13 Nuclei 6
If the mass number of A2 is 176 and atomic number is x then what is the atomic number and mass number of A1 and A? Are they isotopes or isobars?
Answer:
The mass number of A2 = 176,
atomic number of A2 = 71.
Due to decay of α – particle mass number decreases by 4 and atomic number decreases by 2.
∴ Mass number of A1 = 176 + 4 = 180 and
its atomic number = 71 + 2 = 73
Similarly
The mass number of A = 180 + 1 = 181 and
atomic number of A = 73 + 0 = 73
Since, the atomic number of A and A1 are same so they are isotopes.

Question 5.
Define decay constant of a radioactive substance. Write its relation with half life?
Answer:
The decay constant is defined as the reciprocal of that time interval during which the number of active nuclei in a given sample of a radioactive substance reduces to times of the initial value of number of nuclei.
If T is half life time and X is decay constant then
T = \(\frac {0.6931}{λ}\).

MP Board Solutions

Question 6.
What is nuclear fission? Give an example.
Answer:
When a heavier nucleus is bombarded with neutrons then it get splitted into two lighter nuclei. This process is called as nuclear fission.
A huge amount of energy is released in this process.
92U235 + 0n156Ba141 + 36kr92 + 3 0n1 + 200 MeV.

Question 7.
What is nuclear fusion? Give an example.
Answer:
When two lighter nuclei fused together to form a heavier nucleus then a huge amount of energy is released in this process. This process is called nuclear fusion.
1H2 + 1H22He4+ 24MeV.

Question 8.
A radioactive element with mass number 218 and atomic number 84 emits a β – particle. What would be the mass number and atomic number after decay?
Answer:
Since, after the emission of β – particle there is no change in the mass number of element but its atomic number is increased by 1.
Therefore the mass number will be 218 and atomic number will be 84 + 1 = 85.

Question 9.
The ratio of radii of two nuclei are 1 : 2. Find out the ratio of their mass number.
Solution:
Radius of nucleus
MP Board 12th Physics Important Questions Chapter 13 Nuclei 7

Question 10.
The nuclear fusion process is difficult as compared to nuclear fission. Why?
Answer:
For nuclear fusion a high temperature (≈ 107 K) is required. It is very difficult to achieve this temperature, so nuclear fusion is difficult.

Question 11.
Write the important properties of nuclear forces.
Answer:

  1. Nuclear forces are attraction force
  2. These forces does not depend on charge
  3. These forces are short range forces
  4. They are strong forces
  5. The nuclear forces are not central forces.

Question 12.
Write properties of nuclear forces. Prove that the density of nucleus is independent of mass number.
Answer:
Properties of nuclear forces :

  1. Nuclear forces are attraction force
  2. These forces does not depend on charge
  3. These forces are short range forces
  4. They are strong forces
  5. The nuclear forces are not central forces.

Let the mass number of a nucleus is A and radius is r then volume of nucleus be
MP Board 12th Physics Important Questions Chapter 13 Nuclei 8
Thus, it is clear that material density of a nucleus is independent of its mass number.

MP Board Solutions

Question 13.
Write difference between nuclear fusion and nuclear fission.
Answer:
Difference between nuclear fusion and nuclear fission :
Nuclear fission:

  • In this prosses a heavy nucleus splitted into two lighter nuclei.
  • This process is possible at normal temperature.
  • Per fission released energy is very high (200 MeV)

Nuclear fusion:

  • In this process two lighter nuclei fused together to form a heavy nucleus.
  • This process is possible at very high temperature.
  • Per fusion released energy is comparatively less (24 MeV).

Nuclei Long Answer Type Questions

Question 1.
Define ‘electron volt’ and ‘Atomic mass unit”. Find out the energy equivalent to mass of a proton in joule.
Answer:
Electron volt:
The energy acquired by an electron when it is being accelerated by a potential difference of 1 volt is called ‘electron volt’.
1 electron volt = 1.6 x 10-19J.

Atomic mass unit:
An atomic mass unit is defined as (\(\frac {1}{12}\)) of the mass of 1 atom of carbon – 12.
1 atomic mass unit = 1.66 x 10-27kg
(1 a.m.u. or only 1u)
The mass of proton = 1.673 x 10-27 x (3 x 108 )2
= 15.05 x 10-11J
= 1.505 x 10-10J
∴ The energy equivalent mass of 1 proton is 1.505 x 10-10J

MP Board Solutions

Question 2.
Draw the graph showing the variation of binding energy per nucleon with the mass number. Write important conclusions drawn from it. (CBSE 1994)
Or
Draw the graph showing the variation of binding energy per nucleon with mass number. Highlight the region where the nuclei are more stable. (CBSE 1996)
Or
Draw the graph showing the variation of binding energy per nucleon with the mass number. Highlight the region where the nuclear fusion takes place. (CBSE 1996)
Answer:
From the binding energy curve, it follows that:

1. The average binding energy/ nucleon for nearly all elements is 8 MeV

2. The maximum value of binding energy per nucleon is 8.79 MeV and it is for Fe. This explains the large abundance of Fe in nature

3. Since for nuclei of intermediate mass numbers, the value of the binding energy per nucleon is around the maximum value, these nuclei are the most stable

4. The binding energy/ nucleon decreases for nuclei of mass number more than 56 and its least value is 7.6 MeV.
MP Board 12th Physics Important Questions Chapter 13 Nuclei 9

5. Below mass number 28, there are peaks in the curve corresponding to those nuclei whose mass numbers are multiples of four. These nuclei contain an equal number of protons and neutrons. Though peaks occur corresponding to \(_{ 4 }^{ 2 }{ He}\), \(_{ 8 }^{ 4 }{ Be }\), \(_{ 12 }^{ 6 }{ C }\), \(_{ 16 }^{ 8 }{ O }\) and \(_{ 20}^{ 10 }{ Ne }\), we have shown only the first peak corresponding to \(_{ 4 }^{ 2 }{ He }\) Obviously, these nuclei have more binding energy per nucleon than their neighbours. This explains the stability of an α – particle (\(_{ 4 }^{ 2 }{ U }\))

6. The smallest value of the binding energy per nucleon is in the case of a deuteron (\(_{ 2 }^{ 1 }{ U }\)) and its value (2.2 MeV)/2 = 1.1 MeV. This is confirmed by the fact that a photon whose energy is 2.2 MeV or more, can split a deuteron into a free neutron and a free proton. This phenomenon is called the photodisintegration of a deuteron.

Question 3.
Calculate binding energy per nucleon of 26Fe56.
Given : m(\(_{ 26 }^{ 56 }{ Fe }\)) = 55.934939 a.m.u., m (proton ) = 1.007825 a.m.u., m (neutron) = 1.008665 a.m.u. (CBSE 1993,95, 2000 Supp.)
Solution:
Number of protons in = \(_{ 26 }^{ 56 }{ He }\) is 26 and number of neutrons is 56 – 26 = 30.
∴ Mass of 26 protons = 1 0077825 x 26
= 26.202345 a.m.u.
Mass of 30 neutrons = 1.008665 x 30
= 30.25995 a.m.u.
Total mass of nucleons = 26.202345 + 30.25995
= 56.4623 a.m.u.
Mass of 26Fe56 = 55.934939.a.m.u.,
∴ Mass defect ∆m = 56.4623 – 55.934939
= 0.527361 a. m. u.
∴ Binding energy of 26Fe56 = 0.527361 x 931
= 490.973091 MeV
Binding energy per nucleon = \(\frac {490.973091}{56}\)
= 8.7674 MeV.

MP Board Solutions

Question 4.
Define the term half-life period and decay constant of a radioactive sample. Derive a relation between these terms.
Answer:
The half – life of a radioactive substance is the time it takes half of a given number of radioactive nuclei to decay. (CBSE 1995, 2001)
The SI unit of Tm is second (s).
Example:
Half life of radium is 1600 years. It means that if 1 gm of radium is taken then after 1600 years \(\frac {1}{2}\) gm of radium will decay.
Let us assume that at time t = 0, the number of radioactive nuclei present is N0 and after time t, the number of radioactive nucleus remaining is N, then according to law of radioactive decay,
N = N0e-λt
Where, λ is decay constant.
If the half – life of radioactive sample is T1/2, then at t = T1/2
N = \(\frac { { N }_{ 0 } }{ 2 }\)
Substituting in equation (1), we get ,
MP Board 12th Physics Important Questions Chapter 13 Nuclei 10
From equation (2), it is clear that half life of a radioactive sample is inversely proportional to decay constant.

Question 5.
State law of radioactive decay and derive the following formula :
N = N0 e-λt, where symbols have their usual meaning.
Answer:
According to the radioactive decay law :
The rate at which a particular decay process occurs in a radioactive sample is proportional to the number of radioactive nuclei present (that is, those nuclei that have not yet decayed).
Let N0 = Total number of radioactive nuclei present originally at time t = 0,
(t = 0 refers to the time when the radioactive element is freshly separated from its by products), and N = Total number of radioactive nuclei present at any time t.
MP Board 12th Physics Important Questions Chapter 13 Nuclei 11
According to the radioactive decay law,
– \(\frac {dN}{dt}\) ∝ N
(- ve sign indicated that the number of radioactive nuclei decreases with time).
Thus, – \(\frac {dN}{dt}\) = λN
Where A is a constant of proportionality and is called the disintegration constant or decay constant.
Equation (1) can be written as
\(\frac {dN}{dt}\) = – λdt
When t = 0, N = N0 and when t = t,N = N.
Integrating equation (2) within proper limits,
MP Board 12th Physics Important Questions Chapter 13 Nuclei
From equation (3) it is clear that (i) the radioactive decay is an exponential process i.e., the decay is fast initially and later on it becomes slow.

Nuclei Numerical Questions

Question 1.
An imaginary fission reaction is given below :
\(_{ 92 }^{ 236 }{ X }\) → \(_{ a}^{ 141 }{ Y }\) + \(_{ 36 }^{ b }{ Z }\) + 3\(_{ 0 }^{ 1 }{ n }\)
Find out value of a and b.
Solution:
a + 36 + 0 = 92
a = 56.
and 141 + b + 3 = 236
b = 92.

MP Board Solutions

Question 2.
The half life of a radioactive substance is 30 days. What will be the number of radioactive atoms after 90 days?
Solution:
Given : T = 30 days, t = 90 days
n = \(\frac {t}{T}\) = \(\frac {90}{30}\) = 3
Formula : N = N0
= N0(\(\frac {1}{2}\))n
= N0(\(\frac {1}{2}\))3
= \(\frac { { N }_{ 0 } }{ 8 }\)
Thus, the number of radioactive atoms be \(\frac {1}{8}\) times of their initial value.

Question 3.
How many fission per second takes place if its half life for α – decay is 1.42 x 1017sec?
Solution:
MP Board 12th Physics Important Questions Chapter 13 Nuclei 13

MP Board Class 12th Physics Important Questions

MP Board Class 12th Physics Important Questions Chapter 12 Atoms

MP Board Class 12th Physics Important Questions Chapter 12 Atoms

Atoms Important Questions

Atoms Objective Type Questions

Question 1.
Choose the correct answer of the following:

Question 1.
According to Ruther ford’s atomic model the electrons inside the atom are:
(a) Stationary
(b) Centralized
(c) Revolving
(d) None of these.
Answer:
(c) Revolving

Question 2.
The size of atom is of order of:
(a) 10-15 m
(b) 10-15 cm
(c) 10-10 m
(d) 10-10 cm.
Answer:
(c) 10-10 m

Question 3.
In Bohr’s model in an stable orbit the speed of electron vn is related with principle quantum number as:
(a) vn = \(\frac {c}{n}\)
(b) v = \(\frac {n}{c}\)
(c) v = n.c
(d) \(\frac { c }{ { n }^{ 2 } }\)
Answer:
(a) vn = \(\frac {c}{n}\)

MP Board Solutions

Question 4.
In terms of Rydberg constant R the wave number of first spectral line of Balmar series is :
(a) R
(b) 3R
(c) \(\frac {5R}{18}\)
(d) \(\frac {8R}{9}\)
Answer:
(c) \(\frac {5R}{18}\)

Question 5.
Hydrogen atom is excited from ground state to n = 4. The number of spectral lines observed be:
(a) 3
(b) 6
(c) 5
(d) 2
Answer:
(b) 6

Question 6.
The value of Bohr’s radius is :
(a) 5.3 x 10-11 nm
(b) 3.5 x 10-10 m
(c) 53.3 x 10-11 nm
(d) None of these.
Answer:
(a) 5.3 x 10-11 nm

Question 7.
The value of Rydberg constant R is :
(a) 1.097 x 10-11 nm
(b) 1.097 x 10-8 m-1
(c) 1.097 x 108 m-1
(d) 1.097 x 107 m-1.
Answer:
(d) 1.097 x 107 m-1.

Question 8.
According to Bohr the speed of electron of first orbit is :
(a) \(\frac {137}{c}\)
(b) 137 x c
(c) 137 + c
(d) \(\frac {c}{137}\)
Answer:
(d) \(\frac {c}{137}\)

Question 2.
Fill in the blanks :

  1. In the Geiger Marsdan’s α – particle experiment the energy of a particle was ……………
  2. According to Rutherford’s atomic model the total energy of energy was …………… (Positive/Negative)
  3. The spectral lines of visible region of hydrogen spectrum was first seen by ……………
  4. The value of Rydberg constant R is ……………
  5. The electron revolve round the nucleus in such orbits in which the value of angular momentum is integral multiple of ……………
  6. The maximum ionisation energy of hydrogen atom is ……………
  7. In first excited state of hydrogen atom the total energy of electron is about …………… eV.

Answer:

  1. 5.5 MeV
  2. Negative
  3. Balmar
  4. 1.097 x 107m-1
  5. \(\frac {h}{2π}\)
  6. 13.6 MeV
  7. -3.4 eV.

Question 3.
Match the column:
MP Board 12th Physics Important Questions Chapter 12 Atoms 1
Answer:

  1. (e)
  2. (a)
  3. (d)
  4. (b)
  5. (c)

Question 4.
Write the answer in one word/sentence:

  1. What is α – pariide?
  2. Write an important conclusion of Thomson’s atomic model.
  3. Which important part of the atom was discovered by Rutherford?
  4. In which condition the Balmar spectral line in the hydrogen spectrum is obtained?
  5. What is the order of radius of nucleus of an atom?
  6. What is order of size of atom?
  7. Which of the following particle is unstable? α – particle, β – particles, protons, neutrons.

Answer:

  1. The helium nucleus 2He4 is called as α – particle
  2. The mass of atom and positive charge is uniformly distributed in the sphere
  3. Nucleus
  4. When the electrons jump from higher energy level to second energy level
  5. 10-14 m
  6. 10-10 m
  7. Neutrons.

Atoms Very Short Answer Type Questions

Question 1.
What will be the value of scattering angle of α – par tide if impact parameter is zero?
Answer:
In the relation b ∝ cot\(\frac {θ}{2}\) then
cot\(\frac {θ}{2}\) = 0
or \(\frac {θ}{2}\) = 90°
or θ = 180°

Question 2.
In Bohr’s model the radius of first orbit is π0. What will be the radius of second orbit?
Answer:
From the formula πn = π0 n2
If n = 2
Then π2 = π0 x 22 = 4π0

MP Board Solutions

Question 3.
Define stable orbit in Bohr’s atoms model.
Answer:
The stable orbits are those orbits in which the angular momentum of the electron (revolving in those orbits) is integral multiple of \(\frac {h}{2π}\)

Question 4.
State Bohr’s quantization condition.
Answer:
Angular momentum mvr = \(\frac {nh}{2π}\), where n = 1,2,3 …..

Question 5.
Write quantization condition for the angular momentum of electron revolving in second orbit.
Answer:
In the formula mvr = \(\frac {nh}{2π}\)
If n = 2
Then mvr = \(\frac {2h}{2π}\) = \(\frac {h}{π}\)

Question 6.
What is importance of negative energy of electrons in an orbit?
Answer:
The nucleus and electrons makes a bounded system together.

Question 7.
What would happen if the electrons were at rest inside the atom?
Answer:
If the electrons were stationary inside the atom, then they tends to attract to – wards the nucleus.

Question 8.
Why the electrons always revolve round the nucleus?
Answer:
In order to provide a stable configuration to the atoms.

Question 9.
What is Bohr’s radius?
Answer:
The radius of first orbit of a hydrogen atom is called Bohr’s radius. Its value is 0.53 Å.

Atoms Short Answer Type Questions

Question 1.
Why only gold leaf is taken for the scattering of α – particles?
Answer:
For the scattering of α – particles, the leaf should be very thin, so that α – particles gets scattered after collision. Moreover the nucleus should be heavy, so that the α – particles are scattered by large angles. Gold has both the properties moreover this foil of gold can easily be made.

Question 2.
What is angular momentum of electron revolving in first Bohr’s orbit?
Answer:
The angular momentum in nth orbit is
mvr = \(\frac {nh}{2π}\)
Put n = 1
The angular momentum in first orbit = \(\frac {h}{2π}\).

Question 3.
The spectrum of hydrogen atom has many lines though a hydrogen atom contains only one electron why?
Answer:
Large number of spectral lines are present in hydrogen atom spectrum because in the light source of hydrogen a large number of atoms are there. There is different transitions in different atoms. That is why hydrogen spectrum contains number of lines.

Question 4.
What is meant by transition? How much time it takes?
Answer:
The jump of an atom from one energy state (level) to other is called transition. It takes about 10-8 sec.

MP Board Solutions

Question 5.
What may be the maximum and minimum number of emission transitions between energy levels n = 5 to n = 1.
Answer:
Maximum numbers = 10
(5 → 4, 5 → 3, 5 → 2, 5 → 1, 4 → 3, 4 → 2, 4 → 1, 3 → 2, 3 → 1, 2 →1)
Minimum numbers = 1 (5 → 1).

Question 6.
What will happen if electron remain stationary in an orbit?
Answer:
If the electron remains stationary in an orbit it would fall into the nucleus due to electrostatic attraction of nucleus. So the atom would be unstable.

Question 7.
With the help of fundamental constants e, me and h establish a quantity in the dimension of length.
Answer:
This quantity is Bohr’s radius
MP Board 12th Physics Important Questions Chapter 12 Atoms 2

Question 8.
If the elements with principal quantum number n > 4 are not included in nature then what will be the number of such possible elements?
Answer:
For principal quantum n = 4 the atom will have only K, L, M and N shell. The maximum number of electrons in these shell according to 2n2 will be, 2, 8 18 and 32 i.e., the maximum number of electrons in these shell will be 2 + 8 – 18 – 32 = 60. Thus the number of such elements be 60.

Question 9.
What is the significance of the negative energy of electron in the orbit? If it be positive then what does it mean?
Answer:
Total energy of electron E = K + U = \(\frac { { -e }^{ 2 } }{ 8\pi { \varepsilon }_{ 0 }r }\)
Here negative sign shows that the electron is bounded with nucleus if the negative energy be positive then it means that the electron will not revolve round the nucleus in a bounded orbit.

Question 10.
Bohr’s orbit is called stable orbit. Why?
Answer:
Bohr’s orbit is called as stable orbit because the electron revolving in this orbit neither emit the energy nor absorb.

Question 11.
The nuclear density is more than that of atom. Why?
Answer:
we know that density = \(\frac {Mass}{Volume}\).
The mass of nucleus and atoms are almost same but the radius of nucleus is about of order of 10-15 m and that of atom is about of order of 10-10 m. Hence the volume of nucleus is of order of 10-45 m3 and that of atom is of order of 10-30 m3. Obviously the volume of nucleus is about 10-15 times that of atom, so the nuclear density is more than that of atom.

Question 12.
What are Bohr’s quantum condition and frequency conditions?
Answer:
1. The electrons can revolve in those orbits in which the angular momentum of electron is integral multiple of \(\frac {h}{2π}\). Where h is Planck’s constant i.e.
Angular momentum L = mvr = \(\frac {nh}{2π}\), where n = 1,2,3, …..
This is called as Bohr’s quantum condition.

2. When an electron jumps from energy level of higher energy E2 to the energy level having energy E1 then a photon is emitted whose energy is equal to the difference of energies of the two levels i.e., E2 – E1 = hu.
Where o is frequency of emitted photon. This is called Bohr’s frequency condition.

Question 13.
Calculate the radius of first orbit of hydrogen atom. Prove that the velocity of electron in first orbit is \(\frac {1}{137}\) times the velocity of light. (NCERT)
Solution:
MP Board 12th Physics Important Questions Chapter 12 Atoms 3

Question 14.
According to the equation \(\frac {1}{λ}\) = R(\(\frac { 1 }{ { n }_{ 2 }^{ 2 } } -\frac { 1 }{ { n }_{ 1 }^{ 2 } }\)),
what will be the shortest wavelength which will either be absorbed or be emitted?
Solution:
For the shortest wavelength the R.H.S. of the equation should be greatest i.e.,
when n1 = ∞ and n2 = 1, then \(\frac {1}{λ}\) = R
MP Board 12th Physics Important Questions Chapter 12 Atoms 4

Question 15.
Explain the Bohr’s quantization condition of angular momentum.
Answer:
Bohr’s quantization condition: The electron can revolve only in those orbits in which the angular momentum of electron is integral multiple of \(\frac {h}{2π}\) and h is Planck’s constant.

Atoms Long Answer Type Questions

Question 1.
Describe Rutherford’s experiment related to α – particles scattering. Also write conditions drawn from it
Answer:
The experimental arrangement of Rutherford’s α – particles scattering experiment is shown in fig. A radioactive substance radon as ‘Po’ is kept in a lead box from the hole ‘O’ the α – particles are emitted out with high speed. After passing through D1 and D2 these α – particles are incident on gold leaf in the form of a beam.
MP Board 12th Physics Important Questions Chapter 12 Atoms 5
The thickness of gold , foil is about 10 cm. The scattered α – particles falls on screen S in which ZnS is coated α – particles produce flash of light on this screen which can be observed by a microscope M.

Conclusion:

  1. Most of the α – particles pass through the foil straight undeflected. Thus it can be concluded that most of the part of atom is hollow.
  2. α – particles are repelled so, there should be positive charge on nucleus.
  3. The entire positive charge should be on the centre of atom (or nucleus).

Importance:
By the Rutherford’s experiment it is come to know that the positive charge of the atom is concentrated at the central core of atom, which is called as nucleus.

MP Board Solutions

Question 2.
The total energy of an electron in the first excited state of the hydrogen atom is about -3.4 eV :

  1. What is the kinetic energy of the electron in this state?
  2. What is the potential energy of the electron in this state?
  3. Which of the answers above would change, if the choice of the zero of potential energy is changed?

Answer:
MP Board 12th Physics Important Questions Chapter 12 Atoms 6
Also U = – 2 K

1. Here £ = – 3.4 eV
Thus K = – E = -(-3.4) eV
= 3.4 eV.

2. Here U = – 2K
= – 2 (3.4) eV
= – 6.8 eV.

3. E = – 3.4 eV only when the zero of potential energy is at infinity. If the zero of the potential energy is changed, only potential energy (hence total energy) would change. However kinetic energy remain unaffected.

Question 3.
Prove that the radius of nth Bohr’s orbit of an atom is proportional to nth, where n is principal quantum number.
Answer:
The angular momentum of electron in n stable orbit is integral multiple of \(\frac {h}{2π}\)
mvr = \(\frac {nh}{2π}\)
or v = \(\frac {nh}{2πmr}\) … (1)
The equation essential for circular motion of electron is
MP Board 12th Physics Important Questions Chapter 12 Atoms 7
In the above expression except n all the quantities are constant.
∴ r ∝ n2.

Question 4.
In the Balmer series of hydrogen spectrum the two lines are at 4102 Å and 4861Å, if the difference of wave number of these lines is same as the wave number of either spectral lines, then which series will be represented by this line? What will be the wavelength of this line?
Answer:
Let n1 = 2 and n2 = x (for 4102 Å) and for line 4861 Å n1 = 2 and n2 = y.
MP Board 12th Physics Important Questions Chapter 12 Atoms 8
Solving equation (1) and (2) we get,
x = 6 and y = 4
when the electron jumps from n2 = 6 to n1 = 4, then we get a third spectral line which belongs to Brackett’s series.
The wavelength of this spectral line be
MP Board 12th Physics Important Questions Chapter 12 Atoms 9

Question 5.
State main postulates of Bohr’s atomic model.
Answer:
The main postulates of Bohr’s atomic model are as follows :
1. Entire mass and entire positive charge of atom is concentrated at the nucleus.

2. The electrostatic attraction force between nucleus and electron provides the require centripetal force to electrons to revolve round the nucleus.

3. The electron does not revolve round the nucleus in all possible orbits, but they revolve in some specific orbits. These orbits are called as stable orbits.

4. The stable orbits are those orbits in which the angular momentum of electron is integral multiple of \(\frac {h}{2π}\), where h is Plank constant (h = 6.63 x 10-34J-sec.).
If m is mass of electron r is radius of orbit and v is its speed then angular momentum
mvr = \(\frac {nh}{2π}\), where n = 1, 2, 3,
n is called as principal quantum number.

5. The electrons revolving in stable orbits neither absorb nor emit the energy. The emission or absorption of energy takes place only when they jump from one orbit to other.

Atoms Numerical Questions

Question 1.
The ionization energy of hydrogen atom is 13.6 eV. An electron which jumps from ground state to n = 4 state. Calculate the wavelength of photon.
Solution:
Energy in ground state of hydrogen atom E1 = -136 eV
Energy in n = 4 state E4 = \(\frac { -13.6 }{ { 4 }^{ 2 } }\) = – 0.85 eV
∴ Energy of photon = E4 – E1 = – 0.85 + 13.6 = 12.75 eV
∵ hν = E and c = νλ
MP Board 12th Physics Important Questions Chapter 12 Atoms 10
⇒ λ = 973 x 10-10 m = 973 Å.

MP Board Solutions

Question 2.
If the value of energy for an impact parameter is increased then, will the scattering angle increase or decrease? (NCERT)
Solution:
MP Board 12th Physics Important Questions Chapter 12 Atoms 11
If the energy is increased then in the same ratio, the value of cot(θ/2)should be increased i.e., the angle of scattering will decrease.

Question 3.
What should be the value of angle of scattering for impact parameter b = 0? (NCERT)
Solution:
We know that
MP Board 12th Physics Important Questions Chapter 12 Atoms 12
If b = 0, then cot(θ/2) = 0 = cot(90°)
⇒ \(\frac {θ}{2}\) = 90°
or θ = 180°

Question 4.
In a Rutherford’s experiment the number of α – particle scattered at 90° is 28 per minute. Find out the number of particles scattered at 120°.
Solution:
MP Board 12th Physics Important Questions Chapter 12 Atoms 13
Given θ1 = 90°, θ2 = 120° and N1 = 28 per minute
Putting values in the formula
MP Board 12th Physics Important Questions Chapter 12 Atoms 14

Question 5.
Up to what least distant from the nucleus of silver (Z = 47) or α – particles of energy 8 MeV can reach?
Solution:
Formula : r0 = \(\frac { 1 }{ 4\pi { \varepsilon }_{ 0 } } .\frac { 2Z{ e }^{ 2 } }{ E }\)
Given : \(\frac { 1 }{ 4\pi { \varepsilon }_{ 0 } }\) = 9 x 109 Nm2c-2, Z = 47, e = 1.6 x 10-19C
E = 8MeV = 8 x 106 x 1.6 x 10-19J
Putting values in the formula
MP Board 12th Physics Important Questions Chapter 12 Atoms 15

MP Board Class 12th Physics Important Questions

MP Board Class 12th Physics Important Questions Chapter 11 Dual Nature of Radiation and Matter

MP Board Class 12th Physics Important Questions Chapter 11 Dual Nature of Radiation and Matter

Dual Nature of Radiation and Matter Important Questions

Dual Nature of Radiation and Matter Objective Type Questions

Question 1.
Choose the correct answer of the following:

Question 1.
The charge of electron is:
(a) 1.6 x 10-19C
(b) 1.6 x 10-9C
(c) Zero
(d) 9.1 x 10-31C.
Answer:
(b) 1.6 x 10-9C

Question 2.
The energy acquired by an electron which is accelerated by a potential difference of 10 volt is:
(a) 10 eV
(b) 10 joule
(c) 1 eV
(d) 1 joule.
Answer:
(a) 10 eV

Question 3.
Electron was discovered by:
(a) Planck
(b) Milikan
(c) J. J. Thomson
(d) Ruther Ford.
Answer:
(c) J. J. Thomson

MP Board Solutions

Question 4.
The momentum of photon of energy E is:
(a) \(\frac {E}{c}\)
(b) Ec
(c) \(\frac {e}{E}\)
(d) \(\sqrt { Ec }\)
Answer:
(a) \(\frac {E}{c}\)

Question 5.
The de Broglie wavelength associated with an electron accelerated by 150 volt is:
(a) 150 Å
(b) I mU
(c) 1 nm
(d) 1 Å
Answer:
(d) 1 Å

Question 2.
Match the columns:
I.
MP Board 12th Physics Important Questions Chapter 11 Dual Nature of Radiation and Matter 1
Answer:

  1. (d)
  2. (c)
  3. (a)
  4. (e)
  5. (b)

II.
MP Board 12th Physics Important Questions Chapter 11 Dual Nature of Radiation and Matter 2
Answer:

  1. (e)
  2. (c)
  3. (d)
  4. (c)
  5. (b)

III.
MP Board 12th Physics Important Questions Chapter 11 Dual Nature of Radiation and Matter 3
Answer:

  1. (d)
  2. (a)
  3. (e)
  4. (b)
  5. (c)

IV.
MP Board 12th Physics Important Questions Chapter 11 Dual Nature of Radiation and Matter 4
Answer:

  1. (d)
  2. (c)
  3. (e)
  4. (b)
  5. (a)

Question 3.
Fill in the blanks:

  1. The phenomenon of emission of electron from metallic surface is called ……………..
  2. The minimum amount of energy required for emission of electron from a metallic surface is called ……………..
  3. The phenomenon of emission of electrons from the metallic surface on heating it is called ……………..
  4. The electrons are emitted from metallic surface when a light of specific frequency is incident on it. This phenomenon is called ………………
  5. The maximum value of photo current in Lenard’s experiment is called ……………..
  6. In Lenard’s experiment the negative voltage corresponding to which the photoelectric current becomes zero is called ……………..
  7. ……………..is that minimum frequency below which the electron can not be emitted from metal surface what so ever be the intensity.
  8. The minimum amount of energy which is required for emission of electrons from a metal is called ……………..
  9. The radiation has particle and wave nature both. This nature is called as ……………..
  10. A wave is associated with energy moving particle it is called as ……………..
  11. 1 eV = …………….. joule.
  12. The rest mass of an electron is ……………..
  13. The minimum frequency which is required for emission of electrons from a metal surface is called ……………..
  14. The matter waves are discovered by ……………..
  15. The kinetic energy of photoelectrons depends upon the …………….. of incident light.

Answer:

  1. Electron emission
  2. Work function
  3. Thermionic emission
  4. Photoelectric effect
  5. Saturated current
  6. Cut off potential
  7. Threshold frequency
  8. Work function
  9. Dual nature
  10. Debroglie or matter waves
  11. 1.6 x 10-19J
  12. 9.1 x 10-31kg
  13. Threshold frequency
  14. De Broglie
  15. Frequency.

Question 4.
Write the question in one word/sentence:

  1. Who discovered the photoelectric effect?
  2. Who discovered the electron?
  3. State the name of phenomena which shows the particle nature of radiations.
  4. On what factors does the maximum velocity of emitted electrons depend?
  5. Who explain first the photoelectric effect?
  6. Write value of 1 eV in joule.
  7. Write formula of de – Broglie wavelength.
  8. What is rest mass of photons?

Answer:

  1. Hertz
  2. J.J. Thomson
  3. Photoelectric effect and Compton effect
  4. The frequency of incident radiation and work function of metal
  5. Albert Einstein
  6. 1 eV = 1.602 x 10-19J
  7. λ = \(\frac {h}{mv}\)
  8. Zero

Dual Nature of Radiation and Matter Very Short Answer Type Questions

Question 1.
What is mass of a photon of frequency u?
Answer:
From the formula:
E = mc2 = hu
m = \(\frac { hu }{ { c }^{ 2 } }\)

Question 2.
Can the photon exist in the state of rest?
Answer:
No.

Question 3.
Which metals are usually used for photoelectric emission?
Answer:
Alkali metals because their work function is low.

Question 4.
The energy of a photon is hu and its momentum is \(\frac {h}{λ}\) , what will be the of photon?
Answer:
The velocity of photon v = \(\frac {E}{P}\) = \(\frac {hu}{h/λ}\)
or v = uλ.

MP Board Solutions

Question 5.
On what factors does the work function of a metal depend?
Answer:
The work function of a substance depends on its nature.

Question 6.
Due to which radiations the photoelectric effect is produced in metal?
Answer:
Radio waves.

Question 7.
How many joule are in one electron volt?
Answer:
1 eV = 1.6 x 1019J.

Dual Nature of Radiation and Matter Short Answer Type Questions

Question 1.
What is photon nature of light? Explain.
Answer:
The light consists of small bundles of energy. Each bundle is called ‘quanta’ or ‘photon’. Each photon has a definite energy. This energy is given by the equation E = hv, where h is Planck’s constant and u is frequency.

Question 2.
What are de – Broglie waves? Write de – Broglie equation.
Answer:
The waves which are associated with matter are called matter waves or de – Broglie waves
Equation λ = \(\frac {h}{mv}\)
Where λ wavelength, h → Planck’s constant
m → mass, u → velocity of wave.

Question 3.
Why the wave nature of matter is not observed in daily life?
Answer:
de Broglie wavelength is given by
λ = \(\frac {h}{mv}\)
∴ λ ∝ \(\frac {1}{m}\)
As the mass is large, the wavelength is smaller. Therefore, the effect cannot be observed in daily life.

MP Board Solutions

Question 4.
The threshold wavelength of sodium metal is 6800 Å. Clarify the statement
Answer:
The sodium metal will emit the electrons when a light of wavelength 6800 Å will fall on it. If the wavelength of light is more than this value, it will not emit the electrons.

Question 5.
Write properties of matter waves.
Answer:

  1. The matter waves are not electromagnetic in nature. Electromagnetic waves are produced only by charged particles.
  2. The wavelength of matter waves is independent of the charge or nature of particle.
  3. For lighter particle, the wavelength of matter waves will be greater.

Question 6.
What is dual nature of radiations?
Answer:
In same experiments light behaves as particles while in same other experiments it behaves as wave. In the other words either the light radiations will behave as particle or wave but not simultaneously. This is called dual nature of light.

Question 7.
The Planck’s constant is h and frequency of a photon is v then write the Einstein’s photoelectric equation.
Answer:
If h is Planck’s constant and ν is frequency of photon, then Einstein’s photo – electric equation is
h(ν – ν0) = \(\frac {1}{2}\)mvmax2

Question 8.
What is specific charge of electron?
Answer:
The specific charge of electron is 1.76 x 1011C/kg.

Question 9.
What is cut off potential?
Answer:
The negative potential of anode for which the photoelectric current becomes zero is called stopping potential or cut off potential.

Question 10.
What do you mean by specific charge of a charged particle? What is its value for electron?
Answer:
The ratio of charge on a particle and its mass is called as specific charge of that particle
MP Board 12th Physics Important Questions Chapter 11 Dual Nature of Radiation and Matter 5
For electron specific charge is 1.76 x 1011C/kg.

Question 11.
Explain meaning of Planck’s constant, write its formula. Also write its value.
Answer:
Planck’s constant:
According to quantum theory the energy of a photon of a radiation is proportional to its frequency i.e.,
E ∝ ν
or E = hv
Where h is a proportionality constant called as Planck’s constant
Thus, h = \(\frac {E}{ν}\)
Hence, the ratio of energy of photon to the frequency of photon is called Plancks’ constant.
The value of h is 6.6 x 10-34J/sec.

Question 12.
What do you mean by electron – volt? Find its value in joule.
Answer:
The energy gained by an electron, when it is accelerated by 1 volt potential difference is called one electron – volt.
Let the charge on an electron is e and it is accelerated by V volt.
∴ Work done = eV
Energy of electron = eV
or 1 eV = 1.6 x 10-19 x 1
= 1.6 x 10-19 joule.

Question 13.
What is work function? The work function of Lithium and Copper are 2.3 e V and 4 eV respectively, which will be useful for visible light?
Answer:
The least energy which can eject the electrons from the surface of the metal, is called its work function. The work function of lithium is less, therefore it is useful for the visible light.

MP Board Solutions

Question 14.
What is thermionic emission?
Answer:
The phenomenon of emission of electrons, from the surface of the metal when it is heated, is called thermionic emission.

Question 15.
What properties should possess by a metal used for thermionic emission?
Answer:
The metal used for thermionic emission should have the following properties:

  1. Its work function should be small, so that even at low temperature the electrons can be emitted.
  2. The melting point should be high.

Question 16.
What is the reason that the photoelectric emission do not take place for a wavelength, greater than a definite value from a metal?
Answer:
For the emission of electrons from a metal a minimum energy is required which is called work function.
Work function ϕ = \(\frac { hc }{ { \lambda }_{ 0 } }\)
Where, λ0 is threshold wavelength.
If the wavelength of incident light is greater than λ0 then the energy of radiation will be less than work function and the emission of electron will not be possible.

Question 17.
What do you mean by threshold frequency? What is the relation between work function and threshold frequency?
Answer:
The threshold frequency is that minimum frequency of light, below which the photoelectrons do not emit, what so ever may be the intensity of light.
The relation between work function and threshold frequency is
ϕ = hν0
Where, h is Planck constant.

Question 18.
What is photoelectric effect? How it was explained by Einstein?
Answer:
Photoelectric effect:
When some photo sensitive substances are exposed to ultraviolet light electrons are ejected from their surface which are called photoelectrons. This process is called photoelectric emission. On the basis of equation Emax = hν – ϕ0 Einstein gave explanations of laws of photoelectric effect.

1. If the intensity of incident light of constant frequency is increased then the number of electrons emitted per second from the metallic surface will increase but since energy of each photon is hv then the energy of emitted electron will remain constant (or same).

2. By the Einstein’s equation it is clear that E ∝ u, hence on increasing the frequency of incident photons, the energy of emitted electrons will increase.

3. If the frequency of incident photons is less than threshold frequency then electrons will not emit from the metal surface what so even be the intensity.

Question 19.
In the photoelectric effect the occurrence of threshold frequency give more importance to photon theory as compared to the wave theory. Explain.
Answer:
According to wave theory for the light of all frequencies the photoelectric effect should be possible but according to Einstein’s photoelectric equation the kinetic energy of emitted electron is \(\frac {1}{2}\)mv2 = h(ν – ν0). If the frequency o of the incident photons is less than threshold frequency u0. Then the K.E. of electrons will be negative. But it is not possible.

Hence it is clear that the emission of electrons is not possible if the frequency is less than threshold energy. Thus it is clear that the occurrence of threshold frequency in photoelectric effect give more importance to photon theory’ as compared to the wave theory.

Question 20.
The energy of each electrons ejected from the metal surface is different even if the incident light of same frequency is exposed on it. Why?
Answer:
The electrons which are on the surface of metal experience smaller attraction force due to positive ions. While the electrons which are ejected from inner part of the metal experience greater force of attraction. Therefore the velocity of surface electrons are greater hence their energies are greater.

Question 21.
Show that for an electron which is accelerated by a potential difference V, the value of de – Broglie wavelength is given by X = \(\frac { 12.27 }{ \sqrt { V } }\) Å
Answer:
Let the kinetic energy of a moving particle of mass m is K.
Then, K = \(\frac {1}{2}\)mv2
or 2mK = m2v2
or mv = \(\sqrt { 2mK }\)
From the formula λ = \(\frac {h}{mv}\)
or λ = \(\frac { h }{ \sqrt { 2mK } }\) … (1)
If a charge q is accelerated by a potential difference V the kinetic energy of thw charged particle be
K = qV
MP Board 12th Physics Important Questions Chapter 11 Dual Nature of Radiation and Matter 6

Question 22.
Explain meaning of work function in photoelectric effect by giving the equation.
Answer:
In the photoelectric effect if maximum kinetic energy of emitted electron is \(\frac {1}{2}\)mv2maxenergy of incident photon is hν and work function is ϕ then the relation between them can be given by
\(\frac {1}{2}\)mv2max hνϕ
If hν = ϕ, then \(\frac {1}{2}\)mv2max = 0. Thus it is clear that if the energy of incident light is equal to work function then the velocity of emitted electron will be zero.
Again if ϕ > hν, then \(\frac {1}{2}\)mv2max will be negative. which is not possible.
Thus, the work function is that minimum energy which is essential for the emission of electrons.

Question 23.
Write photoelectric effect and explain that what are the reasons due to which wave theory could not explain the photoelectric effect?
Answer:
Photoelectric effect:
When some photo sensitive substances are exposed to ultraviolet light electrons are ejected from their surface which are called photoelectrons. This process is called photoelectric emission. On the basis of equation Emax = hν – ϕ0 Einstein gave explanations of laws of photoelectric effect.

1. If the intensity of incident light of constant frequency is increased then the number of electrons emitted per second from the metallic surface will increase but since energy of each photon is hv then the energy of emitted electron will remain constant (or same).

2. By the Einstein’s equation it is clear that E ∝ u, hence on increasing the frequency of incident photons, the energy of emitted electrons will increase.

3. If the frequency of incident photons is less than threshold frequency then electrons will not emit from the metal surface what so even be the intensity.

The photoelectric effect could not be explained by the wave theory because :

1. By wave theory, energy of light is distributed uniformly and measured in terms of intensity of beam. By increasing the intensity, the amplitude and energy of waves will increases. If light beam falls on the metal, the energy accumulated in these waves should be transferred uniformly to the electrons on the surface and so they must be emitted out.

Waves having higher intensity will impart more energy to the electrons and so the energy of the photoelectrons must increase. But this is against the experimental observation that the maximum K.E. of the photoelectrons does not depend on the intensity of light.

2. The energy transferred by the light waves will not go to a particular electron, but it will be distributed among all the electrons. Hence, electrons will take some time in accumulating energy required for emission. But practically, the emission of electrons takes place immediately after the light is incident on the metal.

Question 24.
Is the photoelectric effect an instant action? The K.E. of electron and photon are same which will have longer wavelength?
Answer:
Yes, photoelectric effect is an instant action
MP Board 12th Physics Important Questions Chapter 11 Dual Nature of Radiation and Matter 7
Thus the electron will have longer de – Broglie wavelength.

Question 25.
Define de – Broglie matter wave and obtain expression λ = \(\frac { h }{ \sqrt { 2mE} }\) for de – Broglie wavelength.
Answer:
de – Broglie waves:
The waves which are associated with matter are called matter waves or de – Broglie waves.
If a particle of mass m is moving with velocity v then its kinetic energy be
E = \(\frac {1}{2}\)mv2
Multiplying by 2m on both sides
2mE = m2v2
or 2mE = (mv)2
or 2mE = p2, (∵ p=mv)
∴ The de – Broglie wavelength associated with the matter particle be
λ = \(\frac {h}{p}\)
or λ = \(\frac { h }{ \sqrt { 2mE}}\)

Question 26.
The propagation of light is by the photons even then it is not seen discontinuous why?
Answer:
The effect of a photon on the retina remains for \(\frac {1}{16}\) seconds but when the light enters into eye, about 1018 photons strike the retina per second. Therefore it does not appear discontinuous.

Question 27.
What is the mass of a photon of frequency ν and wavelength λ? What is rest mass of a photon?
Answer:
The mass of photon of frequency ν
E = mc2 = hν
Then m = \(\frac { hν }{ { c }^{ 2 } }\)
The mass of photon of wevelength λ
E = mc2 = \(\frac {hc}{λ}\)
or m \(\frac {h}{cλ}\)
The rest mass of photon is zero.

MP Board Solutions

Question 28.
What is photoelectric effect? Derive Einstein’s formula:
\(\frac {1}{2}\)mv2max = hν – hν0
Or
Establish Einstein’s equation relating to the photoelectric emission.
Answer:
Photoelectric effect:
When some photo sensitive substances are exposed to ultraviolet light electrons are ejected from their surface which are called photoelectrons. This process is called photoelectric emission. On the basis of equation Emax = hν – ϕ0 Einstein gave explanations of laws of photoelectric effect.
1. If the intensity of incident light of constant frequency is increased then the number of electrons emitted per second from the metallic surface will increase but since energy of each photon is hv then the energy of emitted electron will remain constant (or same).

2. By the Einstein’s equation it is clear that E ∝ u, hence on increasing the frequency of incident photons, the energy of emitted electrons will increase.

3. If the frequency of incident photons is less than threshold frequency then electrons will not emit from the metal surface what so even be the intensity.

Derivation:
Einstein explained photoelectric effect by Planck’s constant quantum theory. According to which light rays travel from one place to the other in the form of bundles of energy. These are called photons. Energy of each photon is hu and momentum is \(\frac {h}{λ}\).
Where, h → Planck constant, u → Frequency of light and λ → Wavelength of light. When photon of energy hu incident on any substance, its energy is used in two ways :

1. Part of energy is used to eject the electron from the surface, which is called work function and represented by ϕ and is different for different substances.

2. Remaining energy is used to increase the kinetic energy of emitted electron.

Therefore, hv = ϕ + Ek … (1)
Where, EK → Maximum kinetic energy of electron.
If u0 is a threshold frequency and maximum velocity of electron is vmax.
MP Board 12th Physics Important Questions Chapter 11 Dual Nature of Radiation and Matter 8
Eqn. (2) is called Einstein’s equation.

Question 29.
Explain the following:

  1. Thermionic emission
  2. Threshold frequency
  3. Work function
  4. Matter waves.

Answer:

1. Thermionic emission : The phenomenon of emission of electrons from the surface of metal when it is heated is called thermionic emission.

2. Threshold frequency : The threshold frequency is that minimum frequency of light, below which the photoelectrons do not emit what so even be the intensity of light.

3. Work function : The minimum energy which can eject the electrons from the surface of the metal is called work function.

4. Matter waves: The waves which are associated with matter are called matter waves or de – Broglie waves.

Dual Nature of Radiation and Matter Long Answer Type Questions

Question 1.
What is photoelectric effect? Write the laws of photoelectric emission.
Or
State any two laws of photoelectric effect?
Or
What is photoelectric effect?
Answer:
Photoelectric effect:
When some photo sensitive substances are exposed to ultraviolet light electrons are ejected from their surface which are called photoelectrons. This process is called photoelectric emission. On the basis of equation Emax = hν – ϕ0 Einstein gave explanations of laws of photoelectric effect.

1. If the intensity of incident light of constant frequency is increased then the number of electrons emitted per second from the metallic surface will increase but since energy of each photon is hv then the energy of emitted electron will remain constant (or same).

2. By the Einstein’s equation it is clear that E cc u, hence on increasing the frequency of incident photons, the energy of emitted electrons will increase.

3. If the frequency of incident photons is less than threshold frequency then electrons will not emit from the metal surface what so even be the intensity.

Laws of photoelectric emission:

  1. There is a definite cut off value of frequency below which electrons cannot be ejected by any substance.
  2. Number of emitted electrons are directly proportional to the intensity of light incident.
  3. Kinetic energy of emitted electrons depends on the frequency of incident light on substance.
  4. There is no time logging between the incident of light and emission of electrons.

MP Board Solutions

Question 2.
Write about an electron, proton and neutron under following points:

  1. Chemical symbol
  2. Charge
  3. Name of discoverer.

Answer:
1. Symbols:

  • Electron – -1
  • Proton – 1H1
  • Neutron – on1

2. Charge:

  • Electron – – 1.6 x 10-19coulomb
  • Proton – +1.6 x 10 coulomb
  • Neutron – Zero.

3. Name of the discoverer:

  • Electron – J.J. Thomson (1897)
  • Proton – Goldstein (1896)
  • Neutron – James Chadwik (1932).

Question 3.
Determine de – Broglie relation.
Or
What are de – Broglie waves? Write down de – Broglie wave equation.
Answer:
de – Broglie wave : The waves which are associated with matter are called matter waves or de – Broglie waves.

Wave equation : According to quantum theory, the energy of a photon is given by the formula:
E = hν … (1)
Where, h = Planck constant and u= Frequency of light. Suppose the mass of photon is m.
By Einstein’s mass energy relation,
E = mc2 … (2)
Where, c = Velocity of light.
Now, from eqns. (1) and (2), we get
MP Board 12th Physics Important Questions Chapter 11 Dual Nature of Radiation and Matter 9
Which is called de – Broglie wave equation.
Again, if the velocity of mass m is v, then
p = mv and λ = \(\frac {h}{mv}\)
Which is de – Broglie relation.

Question 4.
Prove that the de – Broglie wavelength λ of a matter particle of energy E is given λ = \(\frac { h }{ \sqrt { 2mE } }\)
Answer:
The waves which are associated with matter are called matter waves or de – Broglie waves.
If a particle of mass m is moving with velocity v then its kinetic energy be
E = \(\frac {1}{2}\)mv2
Multiplying by 2m on both sides
2mE = m2v2
or 2mE = (mv)2
or 2mE = p2, (∵ p=mv)
∴ The de – Broglie wavelength associated with the matter particle be
λ = \(\frac {h}{p}\)
or λ = \(\frac { h }{ \sqrt { 2mE}}\)

MP Board Solutions

Question 5.
What are photons? Write any four properties of photons.
Answer:
An electro magnetic wave travels in the form of discrete packets on bundles of energy called quanta. One quanta of light radiation is called photon.

Properties:

  1. The speed of photons in vacuum is equal to speed of light.
  2. Photons are electrically neutral. They are not affected by the electric or magnetic fields.
  3. The energy of photons is expressed in terms of electron volt (eV).
  4. The energy of photons is given by E = hν = \(\frac {hc}{ λ}\)
  5. Where, h is Planck’s constant, ν is frequency and λ is wavelength.

Dual Nature of Radiation and Matter Numerical Questions

Question 1.
An electron is accelerated upto 100 volt. Find its kinetic energy.
Solution:
Kinetic energy = eV,
∴ e = 1.6 x 10-19 and V= 100 volt
∴ Kinetic energy = 1.6 x 10-19 x 100 joule
= 100 eV

Question 2.
Find energy of photon of wavelength 4000 A.
Solution:
Given: λ = 4000Å = 4000 x 10-10
or λ = 4 x 10-7
Formula: E = hν or E = \(\frac {hc}{λ}\)
Where h (Planck’s constant) = 6.6 x 10-34 J sec c
= 3 x 108 m/sec
Putting the values in the formula
MP Board 12th Physics Important Questions Chapter 11 Dual Nature of Radiation and Matter 10

Question 3.
An electron is accelerated by a potential difference of 1000 volt, what will be its velocity?
Solution:
MP Board 12th Physics Important Questions Chapter 11 Dual Nature of Radiation and Matter 11

MP Board Class 12th Physics Important Questions

MP Board Class 12th Hindi Swati Solutions पद्य महत्त्वपूर्ण वस्तुनिष्ठ प्रश्न

MP Board Class 12th Hindi Swati Solutions पद्य महत्त्वपूर्ण वस्तुनिष्ठ प्रश्न

बहु-विकल्पीय

प्रश्न 1.
मीरा वैरागिण हुई
(अ) राम के लिए
(ब) विष्णु के लिए
(स) कृष्ण के लिए
(द) ब्रह्मा के लिए।
उत्तर:
(स) कृष्ण के लिए

प्रश्न 2.
अक्रूर नन्द बाबा के यहाँ आए थे
(अ) बलदाऊ को लेने के लिए
(ब) ग्वालाओं को लेने के लिए
(स) नन्द बाबा को लेने के लिए
(द) कृष्ण को लेने के लिए।
उत्तर:
(द) कृष्ण को लेने के लिए।

प्रश्न 3.
संसार में विघ्नहर्ता देवता माने जाते हैं
(अ) हनुमान
(ब) गणेश
(स) सरस्वती
(द) शंकर।
उत्तर:
(ब) गणेश

MP Board Solutions

प्रश्न 4.
पूरण पुराण और पुरुष पुराण हैं (2014)
(अ) राम
(ब) सरस्वती
(स) गणेश,
(द) शनि।
उत्तर:
(अ) राम

प्रश्न 5.
‘मैया कबहिं बढ़ेगी चोटी’ वाक्य कहा है
(अ) राम ने
(ब) बलदाऊ ने
(स) शिव ने
(द) कृष्ण ने।
उत्तर:
(द) कृष्ण ने।

प्रश्न 6.
माटी खाने की सुनकर यशोदा बाँह पकड़ कर लाई
(अ) बलदाऊ को
(ब) कृष्ण को
(स) गोपी को
(द) ग्वाला को।
उत्तर:
(ब) कृष्ण को

प्रश्न 7.
चिनगारी और ज्वाला बनना चाहते हैं
(अ) माता-पिता
(ब) देवर-देवरानी
(स) भाई-बहन
(द) सखा और सखी।
उत्तर:
(स) भाई-बहन

प्रश्न 8.
एक लहर और दूसरा नदी की धारा बनकर आये
(अ) गोप-गोपी
(ब) कृष्ण और गोपी
(स) राधा-कृष्ण
(द) भाई-बहन।
उत्तर:
(द) भाई-बहन।

प्रश्न 9.
तुम कौन-सी पाटी पढ़े हो लला कहा है
(अ) घनानन्द ने
(ब) मीराबाई ने
(स) सूरदास ने,
(द) मतिराम ने।
उत्तर:
(अ) घनानन्द ने

प्रश्न 10.
विश्वास में विष घोलने का काम किया था (2016)
(अ) सुजान
(ब) घनानंद
(स) रत्नाकर,
(द) गुमान।
उत्तर:
(अ) सुजान

MP Board Solutions

प्रश्न 11.
कृष्ण की पत्री आने की बात सुनकर कृष्ण के घर आने लगीं
(अ) राधा
(ब) गोपियाँ
(स) ग्वालिने
(द) मथुरा की स्त्रियाँ।
उत्तर:
(ब) गोपियाँ

प्रश्न 12.
‘छावते कुटीर कहूँ रम्य जमुना कै तीर’ यह कहा है
(अ) कृष्ण ने
(ब) राधा ने
(स) उद्धव ने
(द) गोपी ने।
उत्तर:
(स) उद्धव ने

प्रश्न 13.
“नाव में जल भरने पर और घर में दाम बढ़ने पर दोनों हाथों से उलीचना चाहिए”, यह कथन है
(अ) तुलसीदास का
(ब) रहीम का
(स) बिहारी का
(द) कबीर का।
उत्तर:
(द) कबीर का।

प्रश्न 14.
“यह शरीर कच्चे घड़े के समान है कभी भी टूट सकता है, यह कहा है
(अ) कबीर ने
(ब) बिहारी ने
(स) घनानन्द ने
(द) दादू ने।
उत्तर:
(अ) कबीर ने

प्रश्न 15.
बिना गुणों के बढ़ाई पाकर कोई बड़ा नहीं बन सकता, यह विचार है
(अ) तुलसीदास
(ब) बिहारी
(स) दादू,
(द) वृन्द।
उत्तर:
(ब) बिहारी

प्रश्न 16.
कनागतों में सम्मान होता है
(अ) कोयल का
(ब) मोर का
(स) कौए का
(द) पपीहे का।
उत्तर:
(स) कौए का

प्रश्न 17.
‘बीती विभावरी जाग री’ के बाद की पंक्ति लिखिए
(अ) किसलय का आँचल डोल रहा
(ब) अम्बर पनघट में डुबो रही
(स) खगकुल सा बोल रहा
(द) अधरों में राग अमन्द पिए।
उत्तर:
(ब) अम्बर पनघट में डुबो रही

प्रश्न 18.
सुबह होने पर अब तक सोई है
(अ) स्त्री
(ब) गोपी
(स) मीरा
(द) अहिल्या।
उत्तर:
(अ) स्त्री

MP Board Solutions

प्रश्न 19.
मंगल वर्षा के रचयिता हैं
(अ) सुमित्रानन्दन पंत
(ब) महादेवी वर्मा
(स) भवानी प्रसाद मिश्र
(द) निराला।
उत्तर:
(स) भवानी प्रसाद मिश्र

प्रश्न 20.
इन्द्रधनुष आकाश में दिखाई देता है (2012, 17)
(अ) बसन्त में
(ब) वर्षा ऋतु में
(स) हेमन्त में
(द) शरद में।
उत्तर:
(ब) वर्षा ऋतु में

प्रश्न 21.
वे आधुनिक युग के ऊर्जावान कवि हैं और रूढ़ियों को समाज से भस्म करना चाहते हैं
(अ) श्रीकृष्ण सरल
(ब) निराला
(स) बालकृष्ण शर्मा नवीन
(द) सुमित्रानन्द पन्त।
उत्तर:
(स) बालकृष्ण शर्मा नवीन

प्रश्न 22.
भूधरों की पंक्ति को फूंक से उड़ा देने में भाव है
(अ) आक्रोश प्रकट किया गया है
(ब) विनय की गई है,
(स) परामर्श दिया गया है
(द) दैन्य भाव है।
उत्तर:
(अ) आक्रोश प्रकट किया गया है

प्रश्न 23.
‘राष्ट्र की स्वाधीनता पर आँच न आने देना’ लिखा है
(अ) अरे तुम काल के भी काल हो में
(ब) उद्धव प्रसंग में
(स) राष्ट्र श्रृंगार में
(द) वर्षा ऋतु में।
उत्तर:
(स) राष्ट्र श्रृंगार में।

प्रश्न 24.
वह समय की हर शिला पर अपने चिह्न छोड़ देती है
(अ) कल्याणी
(ब) जवानी
(स) सुगन्ध
(द) वायु।
उत्तर:
(ब) जवानी

प्रश्न 25.
अजामिल जैसे पापी का जिक्र आया है
(अ) महत्ता में,
(ब) उद्धव प्रसंग में
(स) केवट प्रसंग में
(द) वर्षा ऋतु में।
उत्तर:
(स) केवट प्रसंग में

प्रश्न 26.
केवट ने चरण धोने की हठ की
(अ) राम के
(ब) जानकी के
(स) लक्ष्मण के
(द) किसी के नहीं।
उत्तर:
(अ) राम के

प्रश्न 27.
भारत की प्राचीनता की खोज की बात कही है
(अ) केवट प्रसंग में
(ब) महत्ता में
(स) मीरा के पद में
(द) वंदना में।
उत्तर:
(ब) महत्ता में

MP Board Solutions

प्रश्न 28.
सुरलोक से भी सर्वथा उसका अधिक उत्सर्ग है
(अ) भारतवर्ष का
(ब) हिमालय का
(स) कश्मीर का
(द) हरिद्वार का।
उत्तर:
(अ) भारतवर्ष का

प्रश्न 29.
मालिन से फूल यह प्रार्थना करता है
(अ) मेरी सुगन्ध ले लो
(ब) कली को मत छुओ
(स) देखो मालिन मुझे न तोड़ो
(द) एक सुन्दर सा हार बनाओ।
उत्तर:
(स) देखो मालिन मुझे न तोड़ो

प्रश्न 30.
उसका हाथ उठते ही सुध-बुध खो देता है
(अ) पौधा
(ब) फूल
(स) तिनका
(द) कमल।
उत्तर:
(ब) फूल

प्रश्न 31.
विजय पथ पर बढ़ सिपाही विजय तेरी है सुनिश्चित, कहा है
(अ) शिवमंगल सिंह सुमन
(ब) विष्णुकान्त शास्त्री
(स) श्रीकृष्ण सरल
(द) जयशंकर प्रसाद।
उत्तर:
(ब) विष्णुकान्त शास्त्री

प्रश्न 32.
विघ्न-बाधाएँ सहम कर मार्ग छोड़ देंगी (2013, 15)
(अ) दुष्ट का
(ब) वृद्ध का
(स) नवयुवक का
(द) शिशु का।
उत्तर:
(स) नवयुवक का

प्रश्न 33.
‘बसन्त गीत’ प्रकृति चित्रण है
(अ) महादेवी वर्मा का
(ब) निराला का
(स) मुक्तिबोध का
(द) प्रसाद का।
उत्तर:
(ब) निराला का

प्रश्न 34.
निराला ने लिखी है
(अ) हिमालय
(ब) ऋतुराज
(स) बढ़ सिपाही
(द) वसन बासन्ती लेगी।
उत्तर:
(द) वसन बासन्ती लेगी।

प्रश्न 35.
सूखी डाल पल्लव वसना बनेगी
(अ) बसन्त में
(ब) वर्षा ऋतु में
(स) शिशिर में
(द) ग्रीष्म में।
उत्तर:
(अ) बसन्त में

प्रश्न 36.
धरती को मानव तो बसंत को मानवता बताया है
(अ) निराला ने
(ब) महादेवी वर्मा ने
(स) श्रीकृष्ण ‘सरल’ ने
(द) मुक्तिबोध ने।
उत्तर:
(द) मुक्तिबोध ने।

प्रश्न 37.
नदी से ही जिनका आकार बनता है, वे हैं
(अ) नदी के द्वीप
(ब) नाव
(स) शहर और गाँव
(द) चट्टान।
उत्तर:
(अ) नदी के द्वीप

प्रश्न 38.
नदी के द्वीप रचना है
(अ) वीरेन्द्र मिश्र की
(ब) अज्ञेय की
(स) प्रसाद की
(द) मुक्तिबोध की।
उत्तर:
(ब) अज्ञेय की

MP Board Solutions

प्रश्न 39.
‘साँडा-सकारे चंदा-सूरज करते जिसकी आरती’ पंक्ति ली गई है(अ) नदी के द्वीप,
(ब) वसन बांसती लेगी
(स) भारतमाता की जय बोल दो
(द) अमृत का घुट शक्ति के।
उत्तर:
(स) भारतमाता की जय बोल दो

प्रश्न 40.
शान्ति और संस्कृति की बहती स्वाधीन जाह्नवी
(अ) भारत की जय बोल दो
(ब) बलिदानी रंग घोल दो
(स) कोई गीत गाओ
(द) असावधान रहो।
उत्तर:
(ब) बलिदानी रंग घोल दो

प्रश्न 41.
लोकगीत ‘कजली’ है.
(अ) बसंत गीत
(ब) सावन गीत
(स) देवी गीत
(द) शादी गीत।
उत्तर:
(अ) बसंत गीत

रिक्त स्थानों की पूर्ति

1. मीराबाई ने ……………….. की आराधना की है। (2012)
2. कृष्ण को मथुरा ले जाने के लिए …………. आया था। (2009)
3. गणेश संसार की ………………. को दूर कर देते हैं।
4. …………. को सबसे पहले पूजा जाता है। (2009)
5. बलदाऊ …………. को चिढ़ा-चिढ़ाकर परेशान करते हैं। (2009)
6. बालक श्रीकृष्ण को सबसे ज्यादा शिकायत ……………….. से है। (2016)
7. बहन हरहराती गंगा बन जाये और भाई ………………. बन जाय।
8. कवि ने बहन को चिनगारी तथा भाई को ……………….. कहा है। (2015)
9. सुजान को प्रियतमा मानकर ………………. ने सम्बोधित किया है।
10. आनन्द के घन प्रान जीवन ………………… को कहा गया है।
11. उद्धव गोपियों को ज्ञान और ………………. सिखाने आये हैं।
12. हृदय में अनेक मनमोहन न बसाने का कथन ………………. ने कहा है।
13. तुम चिरन्तन अभयता के …………….” हो।
14. ‘अरे तुम हो काल के भी काल’ कविता ………………. द्वारा लिखित है।
15. तुम देश की स्वाधीनता पर …………….. आने न देना।
16. देश के निर्माण को ……………….. खाए जा रहा है।
17. आकाश में तारे रूपी ……………….. डूब रहे हैं।
18. आँखों में विहाग भरे ……………….. सो रही है।
19. वर्षा ऋतु में ………………… सज गये हैं।
20. ‘मंगल वर्षा’ ………………. द्वारा रचित है।
21. कबीर ने ………………… की संगति करने को कहा है। (2017)
22. “नाव में जल भरने पर और घर में दाम बढ़ने पर दोनों हाथों से उलीचना चाहिए।” यह कथा है …………” का। (2013)
23. पान की पीक होठों पर शोभा देती है और ………… नेत्रों में।
24. ईश्वर का काँटेदार डालियों पर ………… लगाना उसकी भूल है।
25. केवट के पास अपने परिवार के पालन करने का कोई और ……………. नहीं था।
26. केवट कठौते में ……………” का पवित्र जल भर लाया।
27. महाभारत का युद्ध भारत के लिए …………. के समान था।
28. आज जो हमसे विरक्त हैं,वे कल …………. होंगे।
29. जब जग मुझे तोड़ने आता मैं …………. रो देता।
30. फूल का हृदय ………….. के हृदय जैसा ही है।
31. “विजय पथ पर बढ़ सिपाही, विजय तेरी है सुनिश्चित,” कहा है …………। (2013)
32. काले …………. मस्त होकर युवाओं का आह्वान कर रहे हैं।
33. ‘बसन्त गीत’ ………….. की अनूठी रचना है।
34. कवि निराला ने पृथ्वी का आँचल …………. को कहा है। (2009)
35. धरती ने अपना धानी घूघट खोलकर अपना ज्वलन्त ………….. देख लिया।
36. ‘अमृत का घुट शक्ति के’ …………. की रचना है।
37. अज्ञेय के अनुसार समाज एक नदी है और व्यक्ति इस नदी में ………….. जैसा है।
38. द्वीप नदी के ……………… है। (2011)
39. मन्दिर,मस्जिद …………. ने इन्सान को कैद कर लिया है।
40. हम अनेकता में भी एकता रखते हैं और झगड़े को ……….. से सुलझाते हैं।
उत्तर:
1. कृष्ण
2. अक्रूर
3. विघ्न-बाधाओं
4. गणेश जी
5. श्रीकृष्ण
6. बलदाऊ
7. झेलम
8. ज्वाला
9. घनानन्द
10. सुजान ‘नेपाली’
11. योग
12. गोपियों
13. स्रोत
14. बालकृष्ण शर्मा ‘नवीन’
15. आँच
16. ध्वंश
17. घट
18. स्त्री
19. हिंडोले
20. भवानी प्रसाद मिश्र
21. साधु
22. कबीर
23. काजर
24. गुलाब
25. अवलम्बु
26. गंगाजू
27. मरण
28. अनुरक्त
29. हँस-हँस
30. मालिन
31. विष्णुकान्त शास्त्री ने
32. मेघ
33. निराला
34. सुनहरी धान,
35. बसन्त
36. मुक्तिबोध
37. द्वीप
38. पुत्र
39. गिरजे
40. विवेक।

MP Board Solutions

सत्य/असत्य

1. मीरा कृष्ण को रिझाना चाहती हैं।
2. मीरा के प्रभु गिरधर नागर हैं।
3. बानी जगरानी की उदारता का कोई भी वर्णन कर सकता है।
4. श्रीराम पूर्ण ब्रह्म पुरुषोत्तम हैं। (2015)
5. गोपियों के मन में बलदाऊ बसे थे। (2011)
6. दाऊ ने कृष्ण से कहा कि उसे तो मोल लिया है।
7. बहन कराली क्रान्ति बने और भाई विकराल बने।
8. भाई प्रेम का पुतला है और बहन ममता की गोद है।
9. सनेह का मार्ग बड़ा टेढ़ा है।
10. पहले सुजान ने स्नेह से अपनाया फिर नेह को तोड़ दिया।
11. उद्धव के आने की खबर सुनकर गोपियाँ राधा के घर आने लगीं।
12. उद्धव की कहानी सुनकर सभी गोपियाँ प्रसन्न हुईं।
13. देह धरे का फल यही है कि परोपकार करे।
14. कबीर ने कहा है कि कुसंग का फल बुरा ही होता है।
15. सम्पत्ति रूपी जल के बढ़ने से मन रूपी कमल मुरझा जाता है।
16. नदी, कूप, सरोवर और बावड़ी यदि किसी की प्यास बुझा देते हैं, तो वे प्यासे के लिए सागर से महान हैं।
17. कवि जयशंकर प्रसाद ने बादल को पनघट कहा है। (2016)
18. लता रूपी स्त्री ने अपने फूलों की गगरी भरी नहीं है।
19. आसमान में बादलों के छाने से धरती हर्षित नहीं हुई।
20. खेत के बीच में खड़ी होकर किसानिन कजरी के गीत गा रही है।
21. तुम्हारे पास काल का धनुष और दिशाओं की डोरी है।
22. तनिक सा अवरोध तुम्हारा सब कुछ बिगाड़ सकता है।
23. हमें देश की स्वाधीनता यों ही मिल गई है।
24. सिंह की खेती किसी स्यार को खाने मत देना।
25. इस घाट से थोडी दर कमर तक पानी है वहाँ से गंगा पार कर लो।
26. केवट की स्नेह भरी वाणी सुनकर श्रीराम जानकी और लखन की ओर देखकर हँसे।
27. जो लोग हमको असभ्य या अशिक्षित बता रहे हैं, वे अज्ञ हैं या पक्षपात कर रहे हैं।
28. कल जो हमारी सभ्यता पर अज्ञानता के कारण हँसे थे वे आज हमारे अनुसन्धान से प्रसन्न
29. जगती के मधुवन में पुष्प और मालिन पुराने साथी हैं।
30. हम दोनों में यौवन और आकर्षण नहीं है।।
31. जो अपने धर्मपथ पर आगे आने वाली आपदाओं को तुच्छ मान कर आगे बढ़ते हैं विजय उनके चरणों में लोटती है।
32. कवि युवक को एक पग भी पीछे न हटाने के लिए शपथ दे रहा है।
33. बसन्त के आने पर वन प्रसन्न हो गया है।
34. मधुप वृन्द चारणों की भाँति गीत नहीं गा रहे हैं।
35. रूखी सी डाल बसन्त आगमन पर पल्लव वसना हो जाएगी।
36. पार्वती ने शिव को वर कर संसार को सुख नहीं दिया।
37. बसन्त में खिले लाल-लाल फूल मनुष्य के हृदय में क्रान्ति की ज्वाला के समान हैं।
38. ‘नदी के द्वीप’ रचना के कवि अज्ञेय हैं। (2009)
39. नदी के द्वीप नदी के पुत्र की तरह होते हैं। (2013)
40. कवि ने द्वीप को पर्वत का पुत्र कहा है। (2017)
41. परिवर्तन में मन ढालना और हर पर्वत से भागीरथी निकालना सरल है।
उत्तर:
1. सत्य
2. सत्य
3. असत्य
4. सत्य
5. असत्य
6. सत्य
7. सत्य
8. सत्य
9. असत्य
10. सत्य
11. असत्य
12. असत्य
13. सत्य
14. सत्य
15. असत्य
16. सत्य
17. असत्य
18. असत्य
19. असत्य
20. सत्य
21. सत्य
22. असत्य
23. असत्य
24. सत्य
25. सत्य
26. सत्य
27. सत्य
28. असत्य
29. सत्य
30. असत्य
31. सत्य
32. सत्य
33. सत्य
34. असत्य
35. सत्य,
36. असत्य,
37. सत्य
38. सत्य
39. सत्य
40. असत्य
41. असत्य।

MP Board Solutions

जोड़ी मिलाइए

I.
MP Board Class 12th Hindi Swati Solutions पद्य महत्त्वपूर्ण वस्तुनिष्ठ प्रश्न img-1
उत्तर:
(1) → (स)
(2) → (द)
(3) → (इ)
(4) → (ब)
(5) → (अ)

II.
MP Board Class 12th Hindi Swati Solutions पद्य महत्त्वपूर्ण वस्तुनिष्ठ प्रश्न img-2
उत्तर:
(1) → (स)
(2) → (इ)
(3) → (अ)
(4) → (ब)
(5) → (द)।

III.
MP Board Class 12th Hindi Swati Solutions पद्य महत्त्वपूर्ण वस्तुनिष्ठ प्रश्न img-3
उत्तर:
(1) → (स)
(2) → (द)
(3) → (अ)
(4) → (इ)
(5) → (ब)।

IV.
MP Board Class 12th Hindi Swati Solutions पद्य महत्त्वपूर्ण वस्तुनिष्ठ प्रश्न img-4
उत्तर:
(1) → (स)
(2) → (द)
(3) → (अ)
(4) → (ब)।

MP Board Solutions

एक शब्द/वाक्य में उत्तर

प्रश्न 1.
मीरा की भक्ति किन भाव की है? (2014)
उत्तर:
दाम्पत्य (प्रेम) भाव की।

प्रश्न 2.
इस देह पर गर्व क्यों नहीं करना चाहिए? (2011)
उत्तर:
क्योंकि यह माटी में मिल जाती है।

प्रश्न 3.
गजमुख का मुख कौन देखता है? (2010, 15)
उत्तर:
दसमुख (रावण)।

प्रश्न 4.
कौन से ऐसे देव हैं जिन्हें विघ्नहर्ता कहा जाता है?
उत्तर:
गणेश।

प्रश्न 5.
सूरदास के इष्ट देव कौन हैं?
उत्तर:
श्रीकृष्ण।

प्रश्न 6.
बालकृष्ण ने जब यशोदा से बलदाऊ की शिकायत की, तो माँ उसे क्या समझाती
उत्तर:
बलभद्र तो जन्म से ही धूर्त है।

प्रश्न 7.
गोपालसिंह नेपाली ने भाई-बहन के बीच के प्रेम को किसके परिवेश में व्यक्त किया है?
उत्तर:
राष्ट्रीय प्रेम के।

प्रश्न 8.
यदि बहन आँगन की ज्योति है, तो भाई कौन है?
उत्तर:
घर का पहरेवाला।

प्रश्न 9.
घनानन्द के अनुसार सनेह का मार्ग कैसा है? (2013)
उत्तर:
सीधा व सरल।

प्रश्न 10.
‘घनानन्द के पद’ कविता में कवि ने कौन से रस का वर्णन किया है?
उत्तर:
वियोग श्रृंगार का।

MP Board Solutions

प्रश्न 11.
विश्वास में विष घोलने का कार्य किसने किया है? (2009, 17)
उत्तर:
सुजान ने।

प्रश्न 12.
नन्द के घर में गोपियाँ क्या खबर पाकर एकत्रित हुई?
उत्तर:
उद्धव के आगमन की।

प्रश्न 13.
मथुरा से योग सिखाने कौन आया था? (2016)
उत्तर:
उद्धव।

प्रश्न 14.
कबीरदास जी ने किसकी संगति को अच्छा बताया है? (2009)
उत्तर:
साधु (सज्जन) पुरुष की।

प्रश्न 15.
नींव के पत्थर (शहीद) तुम्हें क्या शपथ दे रहे हैं?
उत्तर:
धरोहर की रक्षा करना।

प्रश्न 16.
नाश को निर्माण के पथ पर मोड़ते हुए जवानी क्या करती है?
उत्तर:
समय की शिला पर पदचिह्न छोड़ती है।

प्रश्न 17.
बीती विभावरी से क्या तात्पर्य है?
उत्तर:
प्रभात हो गया है।

प्रश्न 18.
प्रसाद जी ने पनघट किसे कहा है? (2009, 11)
उत्तर:
आसमान को।

प्रश्न 19.
वर्षा ऋतु के आने पर धरती कैसी हो जाती है?
उत्तर:
हरी-भरी और प्रसन्न।

प्रश्न 20.
वर्षा के शुभ दिन कवि को कैसे लगते हैं?
उत्तर:
किसी जन्म के पुण्य जैसे।

MP Board Solutions

प्रश्न 21.
स्वाति नक्षत्र की बूंद कदली, सीप और भुजंग के मुख में गिरने पर क्या-क्या रूप ग्रहण करती है?
उत्तर:
क्रमशः कपूर, मोती और विष।

प्रश्न 22.
बालकृष्ण शर्मा ‘नवीन’ ने स्वाधीनता की रक्षा के लिए किसका आह्वान किया (2009)
उत्तर:
देश के युवकों का।

प्रश्न 23.
आदर देकर कौए को कब बुलाते हैं?
उत्तर:
कनागतों में।

प्रश्न 24.
नर की और नल नीर की कौन-सी गति समान है?
उत्तर:
जितना नीचा होकर चलेगा उतना ही ऊँचा माना जाएगा।

प्रश्न 25.
केवट की हार्दिक अभिलाषा क्या थी?
उत्तर:
श्रीराम के चरण धोकर पीने की।

प्रश्न 26.
देवगण प्रेम से किसके भाग्य की सराहना करते हैं?
उत्तर:
केवट के।

प्रश्न 27.
प्राचीनता की खोज होने से क्या होगा?
उत्तर:
हमारी उच्चता का ज्ञान होगा।

प्रश्न 28.
विद्या प्राप्ति के लिए कौन से देश भारत में लगातार आते रहे?
उत्तर:
सभी देश।

प्रश्न 29.
मालिन से पुष्प क्या कहता है?
उत्तर:
उसे न तोड़ने के लिए कहता है।

प्रश्न 30.
मालिन के हाथ उठाने पर पुष्प पर क्या प्रभाव पड़ता है?
उत्तर:
वह सुधि-बुधि खो देता है।

MP Board Solutions

प्रश्न 31.
विश्व किसके सामने झुकता है?
उत्तर:
जो अभय हो जय गीत गाते हैं।

प्रश्न 32.
कौन लोग गौरवोज्ज्वल त्यागमय इतिहास बनाते हैं?
उत्तर:
जो वीर विजय में विश्वास रखते हैं।

प्रश्न 33.
बसन्त कौन-सा भाव लेकर आता है?
उत्तर:
प्रसन्नता और उत्कर्ष।

प्रश्न 34.
शैलसुता को अपर्णा क्यों कहते हैं?
उत्तर:
उन्होंने पत्ते खाना भी छोड़ दिया था।

प्रश्न 35.
किसकी तपस्या के फलस्वरूप उसे बसन्त रूपी शिव से विवाह करने का अवसर मिलता है?.
उत्तर:
सूखी डाली रूपी पार्वती की।

प्रश्न 36.
बसन्त में खिले लाल-लाल फूल किसके प्रतिरूप दिखाई देते हैं?
उत्तर:
हृदय में जलती क्रान्ति रूपी ज्वाला के।

प्रश्न 37.
‘नदी के द्वीप’ कविता में कवि ने किसके महत्व को स्वीकार किया है?
उत्तर:
व्यक्ति के।

प्रश्न 38.
व्यक्ति अपने व्यक्तित्व की रक्षा के साथ-साथ किस बात का ध्यान रखे?
उत्तर:
समाज की उपेक्षा न होने पाये।

प्रश्न 39.
‘भारतमाता की जय बोल दो’ कविता में किसका वर्णन किया गया है?
उत्तर:
भारतमाता के वैभव का।

प्रश्न 40.
आस्थाओं की टकराहट से क्या हानि होगी?
उत्तर:
देश टूटेगा।

MP Board Solutions

MP Board Class 12th Hindi Solutions

MP Board Class 12th Hindi Swati Solutions पद्य Chapter 10 विविधा-2

MP Board Class 12th Hindi Swati Solutions पद्य Chapter 10 विविधा-2

विविधा-2 अभ्यास

विविधा-2 अति लघु उत्तरीय प्रश्न

प्रश्न 1.
कवि ने द्वीप को किसका पुत्र कहा है?
उत्तर:
द्वीप का निर्माण नदी के सतत् बहाव के कारण होता है। द्वीप को स्वरूप नदी ही प्रदान करती है। अतः कवि ने द्वीप को नदी का पुत्र कहा है।

प्रश्न 2.
नदी सदा गतिशील रहकर क्या दान देती है?
उत्तर:
नदी सदैव गतिशील रहती है। वह द्वीप को उसका स्वरूप तथा मनुष्य को जीवन दान देती है।

प्रश्न 3.
साँझ-सकारे भारतमाता की आरती कौन करता है?
उत्तर:
साँझ-सकारे भारतमाता की आरती सूरज और चन्द्रमा करते हैं।

प्रश्न 4.
कवि ने भारतमाता की जय-जयकार का आह्वान किससे किया है? (2017)
उत्तर:
भारतीय सपूतों, श्रमकर्ताओं, रचनाकारों, देशज मित्रों, ग्रह-नक्षत्रों (आम जनता) सभी से जय-जयकार करने का आह्वान किया है।

प्रश्न 5.
झुलसती धरा के लिए किस दान की आवश्यकता है?
उत्तर:
झुलसती धरा के लिए कवि ने सावन दान की आवश्यकता को बताया है।

MP Board Solutions

विविधा-2 लघु उत्तरीय प्रश्न

प्रश्न 1.
नदी द्वीप को आकार किस प्रकार देती है? (2014, 16)
उत्तर:
नदी भू-खण्ड के कोनों (कोणों),मार्ग, भूमि का उठान, बालू के किनारे तथा उसको गोलाकार रूप देकर द्वीप को आकार प्रदान करती है। द्वीप नदी के अन्दर उठे हुए भू-भाग का ही एक रूप होता है।

प्रश्न 2.
‘भारतमाता की जय बोल दो’ कविता में किन-किन प्राकृतिक उपादानों का उल्लेख किया है?
उत्तर:
सूर्य, चन्द्रमा, ग्रह-नक्षत्र, ऋतुएँ, पर्वत, नदी, तारे, नारियल के वन, अन्तरीप, पराग, धरती, बादल, आकाश, धूमकेतु तारा आदि प्राकृतिक उपादानों का उल्लेख किया है। सूर्य प्रात:काल तथा चन्द्रमा शाम को भारतमाता की आरती उतारते हैं। नारियल वन से सुगन्ध फूटने लगती है ! ऋतुएँ नवीन परिधान प्रदान करती हैं। भारतमाता इन प्राकृतिक उपादानों के द्वारा और भी सुन्दर लगती है।

प्रश्न 3.
कवि ने प्रकृति से भारत को सजाने-सँवारने का अनुरोध क्यों किया है?
उत्तर:
सुबह तथा सायंकाल सूरज तथा चन्दा भारतमाता का स्वागत करते हैं। सूर्य से उष्णता तथा चन्द्रमा से शीतलता प्रदान होती है। ऋतुओं से कवि ने आह्वान किया है कि भारत माता को नित्य नूतन परिधानों से सुसज्जित करें। भारत की गंगा नदी, हमारे लिए जीवनदायिनी है। कश्मीर की डल झील भारतीय सुषमा का केन्द्र है।

प्रश्न 4.
कवि मिश्र ने देशवासियों के मिल-जुलकर रहने पर अत्यधिक बल क्यों दिया (2013)
उत्तर:
अनेकता में एकता भारत की प्रमुख विशेषता है। यहाँ पर भिन्न-भिन्न प्रकार के रूप-रंग तथा भाषा-भाषी लोग रहते हैं। आपसी झगड़े सदैव ही हानिकारक होते हैं। इन झगड़ों से समाज में विद्रोह तथा बँटवारा होता है। एकता में शक्ति है। अतः मिल-जुलकर रहने के लिए कवि ने अत्यधिक बल दिया है।

प्रश्न 5.
बलिदानी रंग से कवि का क्या तात्पर्य है? (2009, 12)
उत्तर:
भारत सदैव से ही शान्तिप्रिय देश रहा है। प्रत्येक देश की सम्प्रभुता का ध्यान रखा है। हम अपनी सभ्यता और संस्कृति के रक्षक हैं। भारत की स्वतंत्रता, एकता और अखण्डता पर आँच आयेगी तो भारतीय अपना खून बहाकर देश की रक्षा करेंगे। बलिदानी रंग से अभिप्राय खून से है। ऐसा रक्त है जो देश की रक्षा के लिये बहाया जाये।

MP Board Solutions

विविधा-2 दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
द्वीप की विशेषताओं का वर्णन कीजिए।
उत्तर:
द्वीप किसी नदी या विशाल जलराशि में स्थित भूखण्ड होता है। भौगोलिक दृष्टि से यह कठोर चट्टानों से निर्मित होता है और जलराशि से टकराकर सुगढ़ आकृति धारण कर लेता है। यह अपना अलग ही महत्व रखता है। यह प्राणियों के निवास के साथ-साथ उनके आवागमन का माध्यम है तथा नावों और पानी के जहाजों को ठहरने के लिए स्थान उपलब्ध कराता है। यह विशाल भूखण्ड न होकर छोटा भूखण्ड होता है, लेकिन हमारी तरह ही वहाँ भी जीवन सुलभ है। रात में जगमगाती बिजली की रोशनी इसकी सुन्दरता में चार चाँद लगा देती है। इसकी शोभा अत्यन्त ही सुहावनी और आकर्षक होती है। यहाँ पर सभी वस्तुएँ सुलभता से उपलब्ध हो जाती हैं।

प्रश्न 2.
नदी हमें किस प्रकार संस्कार देती है? स्पष्ट कीजिए। (2009, 11)
उत्तर:
“नदी के द्वीप” कविता में नदी समाज का प्रतीक है तथा द्वीप व्यक्ति का प्रतीक है। नदी हमारे किनारों को काट-छाँटकर सही आकार प्रदान करके सुधारती है। बालक में यदि कुसंगति के कारण कोई कमी (विकृति) आती है तो समाज (नदी) उन कमियों को धीरे-धीरे दूर करने का प्रयास करता है। हम नदी (समाज) के पुत्र हैं। समाज के द्वारा हम सभी का पालन-पोषण होता है। समाज हमें सद्गुणों से युक्त बनाता है, हमारी बुराइयों को दूर करता है। अतः हम संस्कारवान बनकर अपने देश के लिए सुयोग्य नागरिक बनते हैं। देश के विकास में अपना योगदान देते हैं।

प्रश्न 3.
‘नदी के द्वीप’ कविता का मूल भाव अपने शब्दों में लिखिए।
उत्तर:
अज्ञेय जी की प्रारम्भिक कविताएँ प्रकृति प्रेम से सम्बन्धित हैं। इनका अधिकांश काव्य प्रेम,प्रकृति तथा समाज आदि से युक्त है। उत्तरवर्ती कविताओं में व्यक्तिवादिता के दर्शन होते हैं। व्यक्ति तथा समाज का अपना अलग-अलग महत्त्व है। व्यक्ति तथा समाज एक-दूसरे के पूरक हैं। कवि का इस कविता के आधार पर मानना है कि समाज एक नदी के जैसा है। व्यक्ति एक द्वीप जैसा है। द्वीप को आकार नदी के द्वारा प्राप्त होता है। उसी प्रकार समाज के द्वारा व्यक्ति का निर्माण होता है व्यक्ति अपनी पहचान समाज में पूरी तरह से नहीं कर सकता। व्यक्ति की अपनी अलग पहचान होती है। उस पहचान को बनाये रखना भी आवश्यक है। समाज तथा व्यक्ति दोनों में तालमेल होना अनिवार्य है। इस तालमेल के द्वारा ही समाज के विकास को सुरक्षित रख सकते हैं।

प्रश्न 4.
कवि मिश्र ने प्रकृति के उपादानों से भारतमाता के लिए क्या-क्या करने को कहा है?
उत्तर:
ग्रह-नक्षत्रों से भारत की जय-जयकार करने का आह्वान किया है। ऋतुओं से भारत माता को नित्य नूतन परिधानों से सुशोभित करने को कहा है। सतरंगी परिधानों से भारतमाता का स्वागत करने,उसे सजाने तथा सँवारने को कहा है। कुंकुम के पत्तों से भारत की जय बोलने को कहा है। तारे लालटेन की भाँति शोभनीय लग रहे हैं। नारियल वन से सुगन्ध प्रवाहित करने को कहा है। पुष्पों की सुन्दर पराग का भी कवि ने आह्वान किया है।

प्रश्न 5.
वह माली है, वह खुशबू है, हम चमन।
वह मूरत है, वह मंदिर है, हम नमन।
इन पंक्तियों में माली, खुशबू, मूरत और मन्दिर किसे कहा गया है और क्यों?
उत्तर:
इन पंक्तियों में माली भारतमाता के लिए, खुशबू देशभक्ति की भावना के लिए, मूरत राष्ट्र देव के लिए, मन्दिर राष्ट्र के निवासियों के लिए प्रयुक्त किया है। माली जिस प्रकार बगीचे की रक्षा करता है। उसी प्रकार, भारतमाता हम सभी का पालन-पोषण करती है। इसका अन्न,जल ग्रहण करके हम बड़े होते हैं। खुशबू देशभक्ति की भावना के लिए प्रयुक्त है,क्योंकि प्रत्येक नागरिक में देशभक्ति की भावना होना अनिवार्य है। मन्दिर में देवी देवताओं की प्रतिमाएँ न होकर राष्ट्र देव की प्रतिमा हो। हम सभी भारतीय एक मन्दिर के समान हैं।

MP Board Solutions

प्रश्न 6.
कवि ने भारतीयों को ‘रक्त चरित्रो’ कहकर क्यों सम्बोधित किया है?
उत्तर:
हम सभी भारतीयों का कर्तव्य है कि देश की एकता को कायम रखें। अपनी सभ्यता और संस्कृति की रक्षा करें। शान्ति और स्वाधीनता की जो गंगा प्रवाहित हो रही है उसमें यदि कोई भी बाधक बने तो अपना बलिदान देकर अपने देश की रक्षा करें। भारत के अमर सपूतो भारत की जय बोलो। रक्त लाल होता है। अतः भारत के लालों को रक्त चरित्र कहकर सम्बोधित किया है।

प्रश्न 7.
मंदिर, मस्जिद और गिरजाघर में मानव कैसे कैद हो सकता है? इनमें कैद मानव को मुक्त कैसे किया जा सकता है?
उत्तर:
मंदिर, मस्जिद और गिरजाघर में बाह्य आडम्बर, पुराने रीति-रिवाजों की भरमार है। पूजा-अर्चना के नाम पर दिखावा अधिक है। मनुष्य धर्म के नाम पर संकीर्णताओं में फंसकर रह गया है। धार्मिक भावना तो हितकर होती है, किन्तु धार्मिक कट्टरता कभी भी किसी भी राष्ट्र के लिए हितकर नहीं है। मनुष्य की सोच संकुचित हो गयी है। मनुष्य इनमें कैद हो चुका है। संकीर्णताओं से ऊपर उठकर सच्चे ज्ञान से इस कैद से मानव को मुक्त किया जा सकता है।

विविधा-2 काव्य-सौन्दर्य

प्रश्न 1.
अलंकार छाँटिए
(क) छाया है माथे पर आशीर्वाद-सा,
वह संस्कृतियों के मीठे संवाद-सा।
उत्तर:
उपमा अलंकार।

(ख) स्थिर समर्पण है हमारा,
हम सदा से द्वीप हैं स्रोतस्विनी के।
उत्तर:
रूपक अलंकार।

प्रश्न 2.
नवगीत और अतुकांत पदों में क्या अन्तर है?
उत्तर:
आधुनिक कविता का नवीनतम विकास नवगीत के रूप में हुआ है। नवगीत हिन्दी काव्य का एक आन्दोलन है। जहाँ मानव मन किसी सौन्दर्य, राग, सत्य के किसी कोण से गहरे छू जाता है। वहाँ गीत की भूमि होती है। इसमें अनुभूति की सरलता तथा सघनता होती है। नवगीत में संगीतात्मकता तथा गेयता का गुण पाया जाता है। जिन पदों में संगीतात्मकता का अभाव है उनमें गद्यात्मकता का गुण है। उन्हें अतुकान्त अथवा मुक्त छन्द कहते हैं।

प्रश्न 3.
निम्नलिखित सामासिक पदों का विग्रह कर समास का नाम लिखिए
रचनाकार, भूखंड, कर्मनाशा, नारियल वन।
उत्तर:
MP Board Class 12th Hindi Swati Solutions पद्य Chapter 10 विविधा-2 img-1

प्रश्न 4.
निम्नांकित शब्दों के दो-दो पर्यायवाची शब्द लिखिए
धरती, सुगंध, नदी, पुत्र, पैर।
उत्तर:
धरती – भू, भूमि।
सुगंध – खुशबू,सुबास।
नदी – सरिता,पयस्विनी।
पुत्र – बेटा,सुत।
पैर – पग, चरण।

MP Board Solutions

नदी के द्वीप भाव सारांश

प्रस्तुत कविता ‘नदी के द्वीप’ विख्यात कवि ‘अज्ञेय’ द्वारा लिखित है। इस कविता में कवि ने प्रतीकात्मक शैली का प्रयोग करते हुए मनुष्य व समाज के मध्य के सम्बन्ध को समझाने का सुन्दर प्रयास किया है।

अज्ञेय जी मूलतः प्रज्ञा पुरुष हैं। उनके काव्य सृजन का केन्द्र बिन्दु उनका बौद्धिक चिन्तन है। उन्होंने प्राकृतिक प्रेम से युक्त रचनाएँ रची। कवि का विचार है कि समाज एक नदी के समान है। व्यक्ति उस नदी में द्वीप के समान है। यह सत्य है कि व्यक्ति का निर्माण समाज के द्वारा होता है, परन्तु व्यक्ति की अपनी भी पहचान होती है। इस पहचान को बनाये रखना जरूरी है। मनुष्य को स्वयं तथा समाज के बीच तालमेल स्थापित करना अनिवार्य है। अपनी रक्षा के साथ-ही-साथ समाज की रक्षा भी अनिवार्य है।

नदी के द्वीप संदर्भ-प्रसंग सहित व्याख्या

(1) हम नदी के द्वीप हैं।
हम नहीं कहते कि हमको छोड़कर स्रोतस्विनी बह जाय।
वह हमें आकार देती है।
हमारे कोण, गलियाँ, अन्तरीप, उभार, सैकत-कूल,
सब गोलाइयाँ उसकी गढ़ी हैं।
माँ है वह । है, इसी से हम बने हैं।

शब्दार्थ :
स्रोतस्विनी = नदी; अंतरीप = द्वीपों के मध्य की उठान; आकार = रूप; कोण = कोने; गलियाँ = रास्ते; उभार = उठाव; सैकत-कूल = बालू के किनारे; गढ़ी = निर्मित।

सन्दर्भ :
प्रस्तुत पद्यांश हमारी पाठ्य-पुस्तक के पाठ विविधा-2 के ‘नदी के द्वीप’ से अवतरित है। इसके रचयिता श्री अज्ञेय जी हैं।

प्रसंग :
कवि द्वीप के प्रतीकात्मक अर्थ के माध्यम से कहते हैं कि जिस प्रकार नदी द्वीप का निर्माण करती है, उसी प्रकार समाज के द्वारा व्यक्ति के व्यक्तित्व का निर्माण होता है।

व्याख्या :
कवि कहता है कि नदी ही द्वीप की निर्मात्री है। वही द्वीप को आकार में ढालती है। द्वीप नहीं चाहता कि नदी उसकी उपेक्षा करती हुई आगे बह जाय। द्वीप के कोण,उसके मध्य का उठान,उसके मार्ग,बालू के किनारे सभी गोलाकार आकृति नदी की ही देन है। द्वीप को नदी से अलग नहीं किया जा सकता। इसी प्रकार, मनुष्य का निर्माण समाज के द्वारा होता है। उसका अस्तित्व समाज के कारण ही है।

काव्य-सौन्दर्य :

  1. भाषा तत्सम शब्दावली से युक्त।
  2. गेयता का अभाव है। अतुकान्त छन्दों का प्रयोग किया है।
  3. प्रतीकात्मक शैली का प्रयोग है। नदी, समाज का प्रतीक है तथा द्वीप व्यक्ति का प्रतीक है।

(2) किन्तु हम हैं द्वीप, हम धारा नहीं हैं,
स्थिर समर्पण है हमारा, हम सदा से द्वीप हैं स्त्रोतस्विनी के
किन्तु हम बहते नहीं हैं, क्योंकि बहना रेत होना है।
हम बहेंगे तो रहेंगे ही नहीं।
पैर उखड़ेंगे, प्लवन होगा, ढहेंगे, सहेंगे, बह जायेंगे।
और फिर हम चूर्ण होकर भी कभी क्या धारा बन सकते?
रेत बनकर हम सलिल को तनिक गॅदला ही करेंगे
अनुपयोगी ही बनायेंगे।

शब्दार्थ :
समर्पण = त्याग; प्लवन = धरती का जल से पूर्ण होना; ढहेंगे = टूटकर गिर जायेंगे; सलिल = जल; तनिक = थोड़ा-सा; गैंदला = गन्दा; अनुपयोगी = बेकार।

सन्दर्भ :
पूर्ववत्।

प्रसंग :
कवि कहता है कि द्वीप का अस्तित्व स्थिर रहने पर ही है। यदि नदी इसका कटाव कर देगी तो वह अस्तित्व विहीन होगा।

व्याख्या :
कवि कहता है कि द्वीप कभी भी धारा नहीं बन सकते। धारा सतत् प्रवाहित रहती है। द्वीप का अस्तित्व स्थिर रहते हुए त्याग की भावना में है। हम हमेशा ही नदी के द्वीप कहलाते हैं। हम नदी की गति के साथ नहीं चलते। यदि हम नदी की धारा के साथ प्रवाहित हो जायेंगे तो स्वयं रेत बन जायेंगे यदि हम नदी के साथ बहेंगे तो हमारा अस्तित्व स्वयं ही समाप्त हो जायेगा। हम अपने स्थान से डिग जाएँगे,तो सभी स्थान जल से पूर्ण हो जायेंगे, हमारे किनारे कट-छंटकर गिरेंगे,इसको सहन करेंगे। यदि हमारा चूर्ण (चूरा) भी हो जाये तो क्या हम धारा बन सकेंगे। रेत बनने के बाद केवल हम जल को गंदा ही करेंगे,उस जल को उपयोग के रहित ही बनायेंगे।

व्यक्ति का अस्तित्व समाज के अनुरूप चलने में है। समाज के विपरीत चलने में उसका कोई अस्तित्व नहीं है। समाज के हित में कार्य करेंगे तो निश्चित ही व्यक्ति के व्यक्तित्व का विकास होगा। व्यक्ति अपनी विकृतियों को समाज में मिश्रित न होने दे। इससे समाज का परिवेश दूषित ही होगा।

काव्य सौन्दर्य :

  1. द्वीप का अस्तित्व स्थिर रहने में है।
  2. तत्सम तथा तद्भव शब्दों का प्रयोग भाषा में किया है।
  3. गेयता का पूर्ण अभाव है। अतुकान्त शैली का प्रयोग।
  4. उपमा अलंकार।

MP Board Solutions

(3) द्वीप हैं हम। यह नहीं है शाप। यह अपनी नियति है।
हम नदी के पुत्र हैं। बैठे नदी की क्रोड़ में।
वह वृहद भूखण्ड से हमको मिलाती है।
और वह भूखण्ड अपना पितर है।
नदी, तुम बहती चलो।
भूखण्ड से जो दाय हमको मिला है मिलता रहा है,
माँजती, संस्कार देती चलो। यदि ऐसा कभी हो-
तुम्हारे आह्लाद से या दूसरों के किसी स्वैराचार से, अतिचार से।

शब्दार्थ :
शाप = अभिशाप; नियति = भाग्य; क्रोड़ = गोद; वृहद = विशाल; भूखण्ड = भू-भाग; पितर = पिता, पूर्वज; दाय = आकार; भाग; माँजती = साफ करना; संस्कार = सद्गुण; आह्लाद = प्रसन्नता; स्वैराचार = स्वेच्छाचार; अतिचार = अत्याचार, अन्याय।

सन्दर्भ :
पूर्ववत्।

प्रसंग :
द्वीप का यह भाग्य ही है कि वह नदी के बीच में है। नदी ने उसे सजाया तथा सँवारा है।

व्याख्या :
कवि कहता है कि द्वीप बनना एक अभिशाप नहीं है। यह तो हमारा भाग्य है कि हम नदी के पुत्र हैं तथा उसकी बीच धारा में बैठे हैं अर्थात् उसकी गोद में स्थित हैं। नदी हमारा अस्तित्व शेष भू-भाग से जोड़ती है शेष हिस्सों से सम्पर्क में रखती है। इस विशाल भू-भाग से ही अपना निर्माण हुआ है, अत: यह भू-भाग अपने पिता के समान है। कहने का अभिप्राय यह है कि व्यक्ति को समाज ने ही मानवीय गुणों से युक्त किया है। समाज ही उसके व्यक्तित्व का निर्माता है। समाज के बीच में ही व्यक्ति रहता है। अतः समाज मनुष्य का जन्मदाता है। नदी द्वीप के आकार को तराशती है, उसे सही आकार प्रदान करती है। तुम प्रसन्नतापूर्वक हमें संस्कारित करती हो। कभी-कभी अन्य के स्वेच्छाचार या अत्याचार से तुम हमारी रक्षा भी करती हो। समाज में कभी-कभी अवांछनीय तत्वों के अत्याचार से हमारी (व्यक्ति की) रक्षा होती है। समाज सद्गुणों का विकास करता है। संस्कारवान व्यक्ति की समाज में विशेष भूमिका रहती है।

काव्य-सौन्दर्य :

  1. भाषा-तत्सम शब्दावली से युक्त, जैसे—नियति, क्रोड़, भूखण्ड आदि।
  2. प्रतीकात्मक शैली।
  3. अतुकान्त छन्दों का प्रयोग। गेयता का अभाव है। कवि ने छन्दों के बन्धन को स्वीकार नहीं किया है।

4. तुम बढ़ो, प्लावन तुम्हारा घरघराता उठे
यह स्रोतस्विनी ही कर्मनाशा, कीर्तिनाशा और घोर काल प्रवाहिनी बन जाय-
तो हमें स्वीकार है वह भी। उसी में रेत होकर
फिर छनेंगे हम। जमेंगे हम। कहीं फिर पैर टेकेंगे।
कहीं फिर भी खड़ा होगा नये व्यक्तित्व का आकार।
मात; उसे फिर संस्कार तुम देना।

शब्दार्थ :
प्लावन = जल से पूर्ण होना; काल प्रवाहिनी = विनाशकारी; आकार = आकृति,स्वरूप; घरघराता = घर-घर की ध्वनि।

सन्दर्भ :
पूर्ववत्।

प्रसंग :
द्वीप के माध्यम से अपने व्यक्तित्व को संस्कारित बनाने की शिक्षा इस पद्यांश में दी गयी है।

व्याख्या :
कवि कहता है कि नदी तुम लगातार गतिशील रहो। तुम्हारे जल के द्वारा घर-घर की ध्वनि होने लगे। चारों ओर जल-ही-जल हो जाए यह जीवनदायिनी नदी अपने विकराल स्वरूप के कारण कर्मनाशा नदी के समान बन जाये। भले ही अपयश के स्वरूप को धारण कर ले, विनाशकारी ही क्यों न बन जाये। हमें तुम्हारा प्रत्येक स्वरूप स्वीकार है। जल-प्लावन के कारण हम पूरी तरह से रेत बन जायें। पुनः कभी-न-कभी हम अपने स्वरूप को प्राप्त करेंगे। किसी भी स्थान पर हम अपने व्यक्तित्व का निर्माण करेंगे। हे माता ! तुम संस्कारों से हमारे व्यक्तित्व का निर्माण करती रहना।

इस समाज में विषम परिस्थितियों के कारण भले ही व्यक्ति का अपना अस्तित्व समाप्त हो जाये। इस समाज में घोर कष्ट भले ही प्राप्त हों। समाज के इस स्वरूप को भी हम स्वीकार करेंगे। अपना अस्तित्व पुनः स्थापित करने में सक्षम होंगे। संस्कारवान बनकर समाज को नयी दिशा प्रदान करेंगे।

काव्य सौन्दर्य :

  1. भाषा तत्सम शब्दों से युक्त है, जैसे-स्रोतस्विनी, कीर्तिनाशा, प्रवाहिनी आदि।
  2. कवि ने निराशावाद में आशावाद के स्वर देखे हैं, जैसे कहीं भी फिर खड़ा होगा नये व्यक्तित्व का आकार।
  3. प्रतीकात्मक शैली। बिम्ब-विधान का सफल चित्रण।
  4. अतुकान्त छन्दों का प्रयोग जिनमें सदैव ही गेयता का अभाव होता है।

MP Board Solutions

भारतमाता की जय बोल दो भाव सारांश

प्रस्तुत कविता ‘भारत माता की जय बोल दो’ ओज के महत्वपूर्ण कवि वीरेन्द्र मिश्र’ की प्रबल लेखनी द्वारा लिखित है। इस कविता में कवि ने देशवासियों से अपनी मातृभूमि को विजयी बनाने की बात कही है।

वीरेन्द्र मिश्र छायावादोत्तर काल के गीतकार हैं। उनके गीतों में राष्ट्रीय भावना ओत-प्रोत है। प्रेम, प्रकृति चित्रण तथा समाज के विभिन्न रूपों का चित्रण उनके काव्य में मिलता है। वे सच्चे अर्थों में संस्कृति के पुजारी एवं रक्षक हैं। अतः इस कविता में कवि ने सांस्कृतिक चेतना तथा प्राकृतिक सुषमा का वर्णन किया है। कवि ने भारतीयों से आह्वान किया है कि भारत माता को विजयी बनायें।

भारतमाता की जय बोल दो संदर्भ-प्रसंग सहित व्याख्या

(1) साँझ-सकारे चंदा-सूरज करते जिसकी आरती
उस मिट्टी में मन का सोना डाल दो
ग्रह-नक्षत्रो ! भारत की जय बोल दो।
वह माली हैं, वह खुशबू है, हम चमन,
वह मूरत है, वह मन्दिर है, हम नमन,
छाया है माथे पर आशीर्वाद-सा,
वह संस्कृतियों के मीठे संवाद-सा,
उसकी देहरी पर अपना माथा टेककर,
हम उन्नत होते हैं उसको देखकर
ऋतुओ ! उसको नित नूतन परिधान दो,
झुलस रही है धरती, सावन दान दो,
सरल नहीं परिवर्तन में मन ढालना,
हर पर्वत से भागीरथी निकालना।

शब्दार्थ :
साँझ = संध्या,शाम; सकारे = सुबह; ग्रह-नक्षत्र = आकाशीय पिण्ड; प्रतीक अर्थ में आम जनता; माली = रक्षक; चमन = बगीचा; आशीर्वाद = शुभ आशीष; देहरी = चौखट, दरवाजा; टेककर = स्पर्श करके; नूतन = नवीन; परिधान = वस्त्र; झुलसना = गर्मी से व्याकुलता; परिवर्तन = बदलाव; भागीरथी = गंगा।

सन्दर्भ :
प्रस्तुत पद्यांश हमारी पाठ्य-पुस्तक के पाठ विविधा-2 के ‘भारत की जय बोल दो’ से अवतरित है। इसके रचयिता गीतकार वीरेन्द्र मिश्र हैं।

प्रसंग :
प्रस्तुत पद्य में कवि ने भारतमाता के प्राकृतिक सौन्दर्य का वर्णन किया है। इसकी सांस्कृतिक विरासत को बनाये रखने का आह्वान भी युवकों से किया है।

व्याख्या :
श्री मिश्र जी कहते हैं जिस देश का गुणगान सुबह-शाम सूरज तथा चन्द्रमा किया करते हैं। उस भारतमाता की सेवा पूर्ण मन से करो। उसकी सेवा में अपने मन को पूरी तरह लगा दो। ग्रह-नक्षत्रो (आम जनता) भारतमाता की जय-जयकार करो। भारतमाता का हम अन्न जल प्राप्त करके बड़े होते हैं। प्रत्येक भारतीय में देशभक्ति की भावना व्याप्त है। हम सभी उस बगीचे के फूल हैं। इसमें राष्ट्रदेव की प्रतिमा है। हमारा इसको नमन स्वीकार हो। देश हमारे ऊपर आशीर्वाद के तरह छाया किये हुए है। विभिन्न संस्कृतियों में आपस में मधुर सम्बन्ध हो। साथ ही वार्तालाप भी मधुर हो। हम भारतमाता को अपना मस्तिष्क (माथा) झुकाकर,स्पर्श करके नमन करते हैं।

भारत भूमि को देखकर सदैव गर्व का अनुभव करते हैं। कवि ने ऋतुओं का आह्वान किया कि हे ऋतुओ! तुम सतरंगी वस्त्र प्रदान करो। भारत में स्थान-स्थान पर हिंसा, साम्प्रदायिकता की आग लगी है। चारों ओर तनावपूर्ण वातावरण है। हे युवको ! इसे मानवीय गुणों से परिपूर्ण करो। ऐसे तनावपूर्ण वातावरण में इंसानियत के गुणों का संचार करना काफी कठिन है। यह उसी प्रकार कठिन है जैसे प्रत्येक पर्वत से गंगा को प्रवाहित नहीं किया जा सकता।

काव्य सौन्दर्य :

  1. कवि ने भारतमाता की वन्दना की है।
  2. प्रकृति के विभिन्न उपादानों का प्रयोग है।
  3. पद्यांश में गेयता का गुण विद्यमान है।
  4. लक्षण-प्रधान भाषा का प्रयोग किया है।

MP Board Solutions

(2) जिस मन्दिर-मस्जिद-गिरजे में कैद पड़ा इंसान हो,
आओ, उसमें किरन ! किवाड़ा खोल दो,
कुंकुम-पत्रो ! भारत की जय बोल दो,
उसको करो प्रणाम, दृगों में नीर है,
झेलम की आँखों वाला कश्मीर है,
बजरे और शिकारे उसकी झील के,
लगते बनजारे तारे कंदील-से,
किसी नारियल-वन की गेय सुगन्ध से,
अंतरीप के दूरागत मकरंद से,
फूटा करता नए गीत का अंतरा,
कुछ क्षण को दुख भूल, विहँसती है धरा,
दो छवि कालों के अन्तर-आवास में,
कोई बादल घुमड़ रहा आकाश में।

शब्दार्थ :
कैद = बंदी; किरन = किरण; कुंकुम = रोली,सिंदूर; दृग = आँखें; शिकारे एवं बजरे = छोटी नाव; कंदील = लालटेन, चिमनी; अंतरीप = द्वीपों के मध्य की उठान; मकरंद = पराग; अंतरा = विराम; आवास = निवास; दूरागत = दूर से आती हुई, बिहँसती है = खुश होती है।

सन्दर्भ :
पूर्ववत्।

प्रसंग :
चारों ओर अशान्ति का वातावरण है। पूजा-अर्चना के नाम पर पाखण्ड है। इन संकीर्णताओं से ऊपर उठने की हम सभी को आवश्यकता है।

व्याख्या :
कवि कहते हैं कि मुझे ऐसे मन्दिर,मस्जिद और गिरजाघर (चर्च) में कोई आस्था नहीं है। जिन इबादतगाहों ने मनुष्य और इन्सानियत को बन्दी बना लिया है,मानव संकीर्णताओं में फँसकर रह गया है। इन पूजागृहों के दरवाजे खोलकर इनके पास तक सच्चा ज्ञान आने दो। भारत के अमर सपूतो भारत की जय-जयकार करो। जो दुखी हैं, परित्यक्त हैं उनका भी सम्मान करो। आगे कवि भारत का चित्रात्मक वर्णन करते हुए कहते हैं कि हमारे देश में धरती का स्वर्ग कश्मीर है। झेलम नदी इसकी आँखों के समान है। कश्मीर की सुन्दर झीलों में स्थित शिकारा तथा बजरे उसकी सुन्दरता को और अधिक बढ़ा रहे हैं। आकाश में चमकने वाले तारे एक लालटेन के समान लग रहे हैं।

ऐसा प्रतीत हो रहा है कि नारियल वन की सुगन्ध प्राप्त करने योग्य है। किसी उठी हुई भूमि के भाग से पराग की खुशबू लगातार आ रही हैं। सभी ओर प्राकृतिक शोभा उपस्थित हैं। इसके पश्चात् हमारे मन से प्रसन्नतापूर्वक गीत की पंक्ति अनायास ही निकलने लगती है। ऐसी स्थिति में धरती माता अपने पहले दुःखों को भूल जाती है। वह प्रसन्न होने लगती है। धरती पर खुशहाली तथा प्रसन्नता का वातावरण छा जाता है। स्वतंत्रता से पहले की स्थिति तथा बाद के बीच का अन्तराल हमें बलिदानों का स्मरण करा देता है। जिस प्रकार आकाश में बादल उमड़ते-घुमड़ते हैं ठीक उसी प्रकार हमारे हृदय में भाव जागरण का दृश्य उपस्थित हो रहा है।

काव्य सौन्दर्य :

  1. कवि ने तत्सम शब्दावली से युक्त भाषा का प्रयोग किया है। यथा-कुंकुम पत्रो, दृग, दूरागत, बिहँसती।
  2. गेयता तथा संगीतात्मकता का गुण।
  3. तुकान्त शैली।
  4. अनुप्रास अलंकार की छटा निराली है।

(3) सर्जन की मंगल-बेला में धूमकेतु क्या चाहता
बच्चों की पावन उत्सुकता तौल दो,
देशज मित्रो ! भारत की जय बोल दो।
हम अनेकता में भी तो हैं एक ही,
हर झगड़े में जीता सदा विवेक ही,
कृति, आकृति, संस्कृति भाषा के वास्ते,
बने हुए हैं मिलते-जुलते रास्ते।

शब्दार्थ :
सर्जन = रचनात्मक, रचना; मंगल-वेला = पावन समय; धूमकेतु = पुच्छल तारा,लक्षणा के अर्थ में अलगाववादी शक्तियाँ; पावन = पवित्र; उत्सुकता = जिज्ञासा; देशज = पड़ोसी देश, देश से उत्पन्न; विवेक = ज्ञान।

सन्दर्भ :
पूर्ववत्।

प्रसंग :
भारत अनेकता में एकता का देश है। कवि ने स्वतंत्रता के उपरान्त की पावन बेला का वर्णन इस पद में किया है।

व्याख्या :
कवि कहता कि भारत में स्वतंत्रता के बाद नव निर्माण की पावन बेला है। इस अवसर में कुछ विभाजक शक्तियाँ भी कार्य कर रही हैं। जिस प्रकार आकाश में धूमकेतु तारा होता है। उसी प्रकार, हमारे देश में विभाजक शक्तियाँ इसको तोड़ने का कार्य कर रही हैं। हमारी पीढ़ी के मन में स्वतंत्र भारत के बारे में अनेक जिज्ञासाएँ थीं। उनकी जिज्ञासाओं के विषय में भली-भाँति सोचें। मेरे पड़ोसी राष्ट्र तुम तो भारत से ही जन्मे हो। अतः तुम्हें भी भारत के जय-जयकार के नारे लगाने चाहिए। भारत में विभिन्न भाषा-भाषी,संस्कृतियों,रूप-रंग,छोटे-बड़े लोग निवास करते हैं। भारत अनेकता में एकता का देश है। इसके बाद भी हम सभी एक हैं। भारतीय हैं। देश की स्वतंत्रता को बनाये रखना ही सबका उद्देश्य है।

काव्य सौन्दर्य :

  1. भाषा-तत्सम शब्दों से युक्त।
  2. भारतीय संस्कृति की विशेषता अनेकता में एकता का उल्लेख कवि ने किया है।
  3. लक्षण प्रधान तथा गेय शैली।
  4. अलंकारों का स्वाभाविक प्रयोग कवि ने किया है।

MP Board Solutions

4. आस्थाओं की टकराहट से लाभ क्या?
मंजिल को हम देंगे भला जवाब क्या?
हम टूटे तो टूटेगा यह देश भी,
मैला वैचारिक परिवेश भी,
सर्जन-रत हो आजादी के दिन जियो,
श्रमकर्ताओ, रचनाकारो, साथियो।
शांति और संस्कृति की जो बहती-स्वाधीन जाह्नवी
कोई रोके, बलिदानी रंग घोल दो,
रक्त चरित्रो ! भारत की जय बोल दो।

शब्दार्थ :
आस्था = विश्वास; टकराहट = लड़ाई, मतभेद; मंजिल = उद्देश्य, भावी पीढ़ी; जवाब = उत्तर; मैला = गंदा, मतभेद; परिवेश = वातावरण; सर्जन-रत = निर्माण कार्य में लीन; श्रमकर्ताओ = मजदूरो; रचनाकारो = साहित्यकारो; जाह्नवी = गंगा; स्वाधीन = स्वतंत्र; रक्त-चरित्रो = भारत माँ के लाल ।

सन्दर्भ :
पूर्ववत्।

प्रसंग :
वीरेन्द्र मिश्र यद्यपि संघर्षों के कवि हैं फिर भी इस पद्यांश में कवि ने शान्ति, सुख तथा समृद्धि की कामना की है।

व्याख्या :
कवि कहते हैं कि आपसी परम्पराओं, रीति-रिवाजों के टकराने से कोई लाभ नहीं है। ये सभी लोगों की अपनी आस्था के केन्द्र हैं। यदि हम भारतीय आपस में लडते रहे तो भावी पीढ़ी को हम क्या कोई जवाब दे पायेंगे? यदि हम बँटेंगे तो निश्चित रूप से यह देश भी बँट जाएगा, कमजोर होगा। लोगों में आपस में विभिन्न मतभेद हैं। अतः विचारों में संकीर्णता है। इस संकीर्णता को समाप्त करने की आवश्यकता है। रचनात्मक कार्य करते हुए हम स्वाधीन भारत में जियें। स्वाधीन भारत में जीवन-यापन करें। मजदूरो, साहित्यकारो, विभिन्न निर्माण कार्य में लगे लोगो देश हित में लगातार कार्य करते रहो। हम शान्ति तो स्थापित करें, किन्तु शान्ति और संस्कृति की पूर्ण वेग से बहती हुई स्वाधीनता की गंगा को कोई रोकने का प्रयास करे तो उसका मुकाबला हम अपना बलिदान करके दें। हे भारत के नवयुवको ! तुम सदैव भारत माँ की जय-जयकार करने को तैयार रहो।

काव्य सौन्दर्य :

  1. मिश्रित शब्दावली मुक्त तत्सम शब्दों का प्रयोग किया है, जैसे-मंजिल,जवाब,परिवेश,शान्ति।
  2. कवि ने आपसी मतभेदों को मिटाने का आह्वान किया है।
  3. संगीतात्मकता तथा गेयता पायी जाती है।

MP Board Class 12th Hindi Solutions

MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra

MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra

Vector Algebra Important Questions

Vector Algebra Objective Type Questions

Question 1.
Choose the correct answer:

Question 1.
Unit vector parallel to the resultant vector of vectors 2\(\hat { i } \) + 4\(\hat { j } \) – 5\(\hat { k } \) and \(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) is:
(a) – \(\hat { i } \) – \(\hat { j } \) + 8\(\hat { k } \)
(b) \(\frac { 3\hat { i } +6\hat { j } -2\hat { k } \quad }{ 7 } \)
(c) \(\frac { -\hat { i } -+8\hat { k } \quad }{ \sqrt { 69 } } \)
(d) \(\frac { -\hat { i } +2\hat { j } -8\hat { k } \quad }{ \sqrt { 69 } } \)

Question 2.
If \(\vec { O } \)A = a, \(\vec { O } \)B = b and C is a point on AB such that \(\vec { A } \)C = 3AB, then \(\vec { O } \)C is equal to:
(a) 3\(\vec { a } \) – 2\(\vec { b } \)
(b) 3\(\vec { b } \) – 2\(\vec { a } \)
(c) 3\(\vec { a } \) – \(\vec { b } \)
(d) 3\(\vec { b } \) – \(\vec { a } \)

MP Board Solutions

Question 3.
If \(\vec { a } \) and \(\vec { b } \) are two vectors such that |\(\vec { a } \)| = 2, |\(\vec { b } \)| = 1 and \(\vec { a } \).\(\vec { b } \) = \(\sqrt { 3 } \), then the angle between them is:
(a) \(\frac { \pi }{ 2 } \)
(b) \(\frac { \pi }{ 4 } \)
(c) \(\frac { \pi }{ 6 } \)
(d) \(\frac { \pi }{ 7 } \)

Question 4.
Area of parallelogram whose adjacent sides are \(\hat { i } \) – 2\(\hat { j } \) + 3\(\hat { k } \) and 2\(\hat { i } \) + \(\hat { j } \) – 4\(\hat { k } \) is:
(a) 3\(\sqrt{6}\)
(b) 4\(\sqrt{6}\)
(c) 5\(\sqrt{6}\)
(d) 6\(\sqrt{6}\)

Question 5.
If \(\vec { a } \) = \(\vec { b } \) + \(\vec { c } \), then \(\vec { a } \).( \(\vec { b } \) × \(\vec { c } \) ) is equal to:
(a) 2\(\vec { a } \). ( \(\vec { b } \) + \(\vec { c } \) )
(b) 0
(c) \(\vec { b } \) = ( \(\vec { a } \) + \(\vec { c } \) )
(d) None of these

Question 2.
Fill in the blanks:

  1. Sum or difference of two vectors is always a ………………………….
  2. Addition of vectors obeys ………………………….
  3. ( \(\vec { a } \) + \(\vec { b } \) ) + \(\vec { c } \) = \(\vec { a } \) + …………………………..
  4. Addition of two vectors can be obtained from ……………………………..
  5. Position vector of point (1,2, 3) w.r.t. the origin will be ……………………………..
  6. If \(\vec { a } \) and \(\vec { b } \) are parllel then \(\vec { a } \) × \(\vec { b } \) = …………………………..
  7. If \(\vec { a } \) and \(\vec { b } \) are parallel then \(\vec { a } \) × \(\vec { a } \) = ………………………..
  8. The unit vector in the direction of vector \(\vec { a } \) will be ……………………………
  9. The projection of \(\vec { b } \) along the direction of \(\vec { a } \) will be ……………………………..
  10. If the vectors 2\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \) 3\(\hat { i } \) + p\(\hat { j } \) + 5\(\hat { k } \) are coplanar then value of p will be …………………………….
  11. A force 2\(\hat { i } \) + \(\hat { j } \) + \(\hat { k } \), acts at a point A whose position vector 2\(\hat { i } \) – \(\hat { j } \) The moment of the force with respect to the origin will be ………………………………..
  12. The area of the parallelogram will be …………………………. whose diagonals are 3\(\hat { i } \) + \(\hat { j } \) – 2\(\hat { k } \) and \(\hat { i } \) – 3\(\hat { j } \) + 4\(\hat { k } \).

Answer:

  1. New vector
  2. Commutative and associative law
  3. ( \(\vec { b } \) + \(\vec { c } \) )
  4. Traingle law of vector addition
  5. \(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \)
  6. collinear
  7. \(\vec { O } \)
  8. \(\frac { \vec { a } }{ |\vec { a } | } \)
  9. \(\frac { \vec { a } .\vec { b } }{ |\vec { a } | } \)
  10. -4
  11. \(\hat { i } \) + 2\(\hat { j } \) + 4\(\hat { k } \)
  12. 5\(\sqrt { 3 } \) sq. unit.

MP Board Solutions

Question 3.
Write True/False:

  1. The sum of the vectors determined by the sides of a triangle taken in order is zero.
  2. If \(\vec { a } \) and \(\vec { b } \) are two non collinear vectors, then |\(\vec { a } \) + \(\vec { b } \)| ≥ |\(\vec { a } \) + \(\vec { b } \)|
  3. A vector whose initial and terminal points are coincident is called unit vector.
  4. If the position vector of the points P and Q are \(\hat { i } \) + 3\(\hat { j } \) – 7\(\hat { k } \) and 5\(\hat { i } \) – 2\(\hat { j } \) + 4\(\hat { k } \) respectively, then the value of |\(\vec { P } \)Q| is 9\(\sqrt { 2 } \).
  5. If |\(\vec { a } \) + \(\vec { a } \)|=|\(\vec { a } \) – \(\vec { b } \)|, then \(\vec { a } \) × \(\vec { b } \) = \(\vec { 0 } \).
  6. The value of \(\vec { a } \).( \(\vec { a } \) × \(\vec { b } \) ) is zero.
  7. If the vectors \(\hat { i } \) – λ\(\hat { j } \) + \(\hat { k } \) and \(\hat { i } \) – \(\hat { j } \) + 5\(\hat { k } \) are mutually perpendicular, then the value of λ is 6.

Answer:

  1. True
  2. False
  3. False
  4. True
  5. False
  6. True
  7. False.

MP Board Solutions

Question 4.
Write the answer is one word/sentence:

  1. If \(\vec { a } \), \(\vec { b } \), \(\vec { c } \) are the position vectors of the vectors of the ∆ABC, then write the formula for area of ∆ABC.
  2. If \(\vec { a } \) = \(\hat { i } \) – 2\(\hat { j } \) + 3\(\hat { k } \),\(\vec { b } \) = 2\(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \) and \(\vec { c } \) = \(\hat { j } \) + \(\hat { k } \), then find the value of [ \(\vec { a } \) \(\vec { b } \) \(\vec { c } \) ]
  3. Find the angle between two vector 3\(\hat { i } \) – 2\(\hat { j } \) + 4\(\hat { k } \) and \(\hat { i } \) – \(\hat { j } \) + 5\(\hat { k } \).
  4. Find the value of \(\hat { i } \) × ( \(\hat { j } \) + 3\(\hat { k } \) ) + \(\hat { j } \) × ( \(\hat { k } \) + \(\hat { i } \) ) + \(\hat { k } \) × ( \(\hat { i } \) + \(\hat { j } \) )
  5. Find the projection of \(\vec { a } \) in the direction of \(\vec { b } \).
  6. If \(\vec { a } \) and \(\vec { b } \) are mutually perpendicular vector then find, the value ( \(\vec { a } \) + \(\vec { b } \) ) 2

Answer:

  1. \(\frac{1}{2}\) |\(\vec { a } \) × \(\vec { b } \) + \(\vec { b } \) × \(\vec { c } \) + \(\vec { c } \) × \(\vec { a } \)|
  2. 12
  3. cos-1 \(\frac { 25 }{ \sqrt { 783 } } \)
  4. 0
  5. \(\frac { \vec { a } .\vec { b } }{ |\vec { b } | } \)
  6. |\(\vec { a } \)|2 + |\(\vec { b } \)|2

Question 4.
Match the Column:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 1
Answer:

  1. (d)
  2. (e)
  3. (a)
  4. (b)
  5. (c)
  6. (g)
  7. (f).

Vector Algebra Very Short Answer Type Questions

Question 1.
Given vectors \(\vec { a } \) = \(\hat { i } \) – 2\(\hat { j } \) + \(\hat { k } \), \(\vec { b } \) = – 2\(\hat { i } \) + 4\(\hat { j } \) + 5\(\hat { k } \) and \(\vec { c } \) = \(\hat { i } \) – 6\(\hat { j } \) – 7\(\hat { k } \). Then find the value of |\(\vec { a } \) + \(\vec { b } \) + \(\vec { c } \)|? (NCERT, CBSE 2012)
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 4

Question 2.
Find the unit vector in the direction of sum of the vectors \(\vec { a } \) = 2\(\hat { i } \) – \(\hat { j } \) + 2\(\hat { k } \) and \(\vec { b } \) = – \(\hat { i } \) + \(\hat { j } \) + 3\(\hat { k } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 3
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 3a

Question 3.
Find the vector in the direction of vector \(\vec { a } \) = \(\hat { i } \) – 2\(\hat { j } \) which has magnitude 7 units? (NCERT)
Solution:
\(\vec { a } \) = \(\hat { i } \) – 2\(\hat { j } \)
Unit vector in the direction of given vector a is:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 2
The vector having magnitude be equal to 7:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 5

Question 4.
Prove that the vectors 2\(\hat { i } \) – 3\(\hat { j } \) + 4\(\hat { k } \) and -4\(\hat { i } \) + 6\(\hat { j } \) – 8\(\hat { k } \) are collinear? (NCERT)
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 6
Hence vector \(\vec { a } \), \(\vec { b } \) are collinear. Proved.

Question 5.
Find direction cosine of the vector \(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \)? (NCERT)
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 7

Question 6.
If \(\vec { a } \) = 2 \(\hat { i } \) – 3 \(\hat { j } \) + \(\hat { k } \) and \(\vec { a } \) = \(\hat { i } \) + \(\hat { j } \) – 2\(\hat { k } \), then find \(\vec { a } \) – \(\vec { b } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 8

Question 7.
If \(\vec { a } \) = \(\hat { i } \) + \(\hat { j } \) + 2\(\hat { k } \) and \(\vec { b } \) = 3\(\hat { i } \) + 2\(\hat { j } \) – \(\hat { k } \), then find |2\(\vec { a } \) – \(\vec { b } \)|?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 9

Question 8.
If the vector \(\vec { a } \) = 2\(\hat { i } \) + \(\hat { j } \) + \(\hat { k } \) and \(\vec { b } \) = \(\hat { i } \) – 4\(\hat { j } \) + λ\(\hat { k } \) are perpendicular then find the value of λ?
Solution:
The given vectors are perpendicular
Hence \(\vec { a } \) . \(\vec { b } \) = 0
(2\(\hat { i } \) + \(\hat { j } \) + \(\hat { k } \) ). ( \(\hat { i } \) – 4\(\hat { j } \) + λ\(\hat { k } \) ) = 0
⇒ 2 – 4 + λ = 0
⇒ λ = 2.

MP Board Solutions

Question 9.
(A) Prove that the vectors 2\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \) and –\(\hat { i } \) + 3\(\hat { j } \) + 5\(\hat { k } \) are perpendicular to each other?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 10
L.H.S = – 2 – 3 + 5
= 0 = R.H.S. Proved

(B) Prove that vector 3\(\hat { i } \) – 2\(\hat { j } \) + \(\hat { k } \) and 2\(\hat { i } \) + \(\hat { j } \) – 4\(\hat { k } \) are perpendicular?
Solution:
Solve as Q.No. 9(A)

Question 10.
If \(\vec { a } \) = 4\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \) and \(\vec { b } \) p\(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) are perpendicular. Find the value of p?
Solution:
\(\vec { a } \) = 4\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \) and \(\vec { b } \) p\(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \)
\(\vec { a } \) and \(\vec { b } \) are perpendicular
\(\vec { a } \).\(\vec { b } \) = 0
∴ 4p – 2 + 3 = 0
⇒ 4p = -1
⇑ p = – \(\frac{1}{4}\)

Question 11.
(A) Find the angle between the vectors (2\(\hat { i } \) + 3\(\hat { j } \) – 4\(\hat { k } \) ) and (3\(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) )?
Solution:
Let \(\vec { a } \) = 2\(\hat { i } \) + 3\(\hat { j } \) – 4\(\hat { k } \), \(\vec { b } \) = 3\(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \)
Let θ be the angle between them
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 12

(B) Find the angle between vectors \(\vec { a } \) = 2\(\hat { i } \) – 2\(\hat { j } \) – \(\hat { k } \) and \(\vec { b } \) = 6\(\hat { i } \) – 3\(\hat { j } \) + 2\(\hat { k } \)?
Solution:
Solve as Q.No. 11(A)

MP Board Solutions

(C) If \(\vec { a } \) = 2\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \) and \(\vec { b } \) = 3\(\hat { i } \) – 4\(\hat { j } \) – 4\(\hat { k } \), then find their dot product and angle between them?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 13
If θ be the angle between them
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 14

Question 12.
If |\(\bar { |a| } \) = 10, \(\bar { |b| } \) = 2 and \(\bar { a } \). \(\bar { b } \) = 2 and \(\bar { a } \). \(\bar { b } \) = 12, then find the value of |\(\bar { a } \) × \(\bar { b } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 15

Question 13.
If \(\vec { a } \) = \(\hat { i } \) + \(\hat { j } \) + \(\hat { k } \) and \(\vec { b } \) = \(\hat { i } \) – \(\hat { j } \) – \(\hat { k } \), then find \(\vec { a } \) × \(\vec { b } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 16

Question 14.
A force \(\vec { F } \) = 4\(\hat { i } \) – 3\(\hat { j } \) + 2\(\hat { k } \) is acting along the direction \(\vec { d } \) = – \(\hat { i } \) – 3\(\hat { j } \) + 5\(\hat { k } \)? Find the work done by the force?
Solution:
\(\vec { d } \) = – \(\hat { i } \) – 3\(\hat { j } \) + 5\(\hat { k } \), \(\vec { F } \) = 4\(\hat { i } \) – 3\(\hat { j } \) + 2\(\hat { k } \) (given)
∴ Work done by force
W = \(\vec { F } \). \(\vec { d } \)
= (4\(\hat { i } \) – 3\(\hat { j } \) + 2\(\hat { k } \) ). (-\(\hat { i } \) – 3\(\hat { j } \) + 5\(\hat { k } \) )
= -4 + 9 + 10 = 15 unit.

MP Board Solutions

Question 15.
If |\(\vec { a } \) + \(\vec { b } \)| = |\(\vec { a } \) – \(\vec { b } \)|, then prove that \(\vec { a } \) and \(\vec { b } \) are perpendicular?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 17
Since dot product is zero. So vectors \(\vec { a } \) and \(\vec { b } \) are perpendiculars. Proved.

Question 16.
If \(\vec { a } \) and \(\vec { b } \) are two vectors such that |\(\vec { a } \)| = 2, |\(\vec { b } \)| = 3 and \(\vec { a } \). \(\vec { a } \) = 3, then find angle between \(\vec { a } \) and \(\vec { b } \)?
Solution:
Solve as Q.No. 17

Question 17.
If |\(\vec { a } \)| = 4, |\(\vec { b } \)| = 4 and \(\vec { a } \). \(\vec { b } \) = 6, then find the angle between \(\vec { a } \) and \(\vec { b } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 18

Question 18.
If \(\vec { a } \) and \(\vec { b } \) are two two vectors such that |\(\vec { a } \)| = 2, |\(\vec { b } \)| = 7 and \(\vec { a } \) ×
\(\vec { b } \) = 3\(\hat { i } \) + 2\(\hat { j } \) + 6\(\hat { k } \), then find the angle between \(\vec { a } \) and \(\vec { b } \)?
Solution:
Let θ be the angle between \(\vec { a } \) and \(\vec { b } \)
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 19

Question 19.
Find cosine angle between vectors 2\(\hat { i } \) – 3\(\hat { j } \) + \(\hat { k } \) and \(\hat { i } \) + \(\hat { j } \) – 2\(\hat { k } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 20

Question 20.
Find the area of the parallelogram whose two adjacent sides are represented by the vectors \(\vec { a } \) = 2\(\hat { i } \) – 3\(\hat { j } \) + \(\hat { k } \), \(\vec { b } \) = \(\hat { i } \) – \(\hat { j } \) + 2\(\hat { k } \) and \(\vec { c } \) = 2\(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 21
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 21a
= 2(1 – 2) + 3(-1-4) + 1(1 + 2)
= -2 – 15 + 3
= -14 cubic unit

Question 21.
Prove that:
\(\hat { i } \).( \(\hat { j } \) × \(\hat { k } \) + ( \(\hat { i } \) × \(\hat { k } \)). \(\hat { j } \) = 0?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 22

Question 22.
If vectors \(\vec { a } \) and \(\vec { b } \) are perpendicular then prove that |\(\vec { a } \) + \(\vec { b } \)|2 = |\(\vec { a } \)|2 + |\(\vec { b } \)|2?
Solution:
We know that
|\(\vec { a } \) + \(\vec { b } \)|2 = |\(\vec { a } \)|2 + |\(\vec { b } \)|2
Vector \(\vec { a } \) and \(\vec { b } \) are perpendicular, then
\(\vec { a } \). \(\vec { b } \) = 0
⇒ |\(\vec { a } \) + \(\vec { a } \)|2 + |\(\vec { a } \)|2 + |\(\vec { b } \)|2. Proved.

Question 23.
Prove that:
\(\vec { a } \) × ( \(\vec { b } \) + \(\vec { c } \) ) + \(\vec { b } \) × ( \(\vec { c } \) + \(\vec { a } \) ) + \(\vec { c } \) × ( \(\vec { a } \) + \(\vec { b } \) ) = \(\vec { 0 } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 23

Question 24.
Find the work done by the force \(\vec { F } \) = 2\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \) in the direction \(\vec { d } \) = 3\(\hat { i } \) + 2\(\hat { j } \) + 5\(\hat { k } \)?
Solution:
W = \(\vec { F } \). \(\vec { d } \)
= (2\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \) ). (3\(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) )
= 6 – 2 + 3 = 7 unit.

MP Board Solutions

Question 25.
If modulus of two vectors \(\vec { a } \) and \(\vec { a } \) are equal and angle between them is 60° and their dot product is \(\frac{9}{2}\) find their modulus? (CBSE 2018)
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 25

Question 26.
Find the area of the parallelogram whose adjacent sides are given by vectors \(\vec { a } \) = 2\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \) and \(\vec { b } \) = 3\(\hat { i } \) + 4\(\hat { j } \) – \(\hat { k } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 26

Question 27.
If \(\vec { a } \) = 4\(\hat { i } \) + \(\hat { j } \) + \(\hat { k } \), \(\vec { b } \) = \(\hat { i } \) – 2\(\hat { k } \) then find the value of |2\(\vec { b } \) × \(\vec { a } \)|?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 26

Question 28.
If \(\vec { a } \) = 4\(\hat { i } \) + 3\(\hat { j } \) + 3\(\hat { k } \) and \(\vec { b } \) = 3\(\hat { i } \) + 2\(\hat { k } \) then, find the value of |\(\vec { b } \) × 2\(\vec { a } \)|?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 27a
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 28

Question 29.
If \(\vec { a } \) = 2\(\hat { i } \) + \(\hat { j } \) + 2\(\hat { k } \) and \(\vec { b } \) = 5\(\hat { i } \) – 3\(\hat { j } \) + \(\hat { k } \), then find the magnitude of vector \(\vec { b } \) in the direction of \(\vec { a } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 29

Question 30.
If \(\vec { a } \) = \(\hat { i } \) + 3\(\hat { j } \) – 2\(\hat { k } \), \(\vec { b } \) = – \(\hat { j } \) + 3\(\hat { k } \) then find the value |\(\vec { a } \) × \(\vec { b } \)|?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 30

Vector Algebra Short Answer Type Questions

Question 1.
Prove that: A(-2\(\hat { i } \) + 3\(\hat { j } \) + 5\(\hat { k } \) ), B( \(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) ) and C(7\(\hat { i } \) + 0\(\hat { j } \) – \(\hat { k } \) ) are coplanar? (NCERT)
Solution:
Let O be the origin then position vector of A, B and C is
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 31
Hence vector \(\vec { A } \)B and \(\vec { B } \)C are parallel but \(\vec { A } \)B and \(\vec { B } \)C has common point B. Hence points A, B and C are coplanar.

MP Board Solutions

Question 2.
If position vectors of points A, B, C and D are 2\(\hat { i } \) + 4\(\hat { k } \), 5\(\hat { i } \) + 3\(\sqrt { 3 } \) \(\hat { j } \) + 4\(\hat { k } \), -2\(\sqrt { 3 } \) \(\hat { j } \) + \(\hat { k } \) then prove that:
CD||AB and CD = \(\frac{2}{3}\) \(\vec { A } \)B?
Solution:
Let O be the origin
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 32
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 32a

Question 3.
If G is centroid of ∆ABC, then prove that:
\(\vec { G } \)A + \(\vec { G } \)B + \(\vec { G } \)C = \(\vec { 0 } \)?
Solution:
Let vectors of vertices A,B and C of ∆ABC are \(\vec { a } \), \(\vec { b } \) and \(\vec { c } \) respectively.
∴ Position vector of centroid G = \(\frac { \vec { a } +\vec { b } +\vec { c } }{ 3 } \)
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 33

Question 4.
Using vectors prove that the medians of traiangle are concurrent?
Solution:
Let medium of ∆ABC are AD, BE and CF.
Let \(\vec { a } \), \(\vec { b } \) and \(\vec { c } \) be the positive vector of points A, B and C respectively.
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 34

MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 34a
Now position vector of a point dividing the median AD in the ratio 2 : 1 is
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 35
Position vector of a point which divides median BE in the ratio of 2 : 1 is
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 35
Position vector of a point which divides median BE in the ratio of 2 : 1 is
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 36
Hence, medians of triangle meets at point G it means concurrent whose position vector is \(\frac { \vec { a } +\vec { b } +\vec { c } }{ 3 } \). Point G is centroid of traingle.

Question 5.
A vector \(\vec { O } \)P, makes angle 45° with OX and 60° with OY. Find the angle made by \(\vec { O } \)P with OZ?
Solution:
Let angle made by vector \(\vec { O } \)P with axes OX, OY and OZ are α, β, γ respectively. then
α = 45°,
β = 60°
∴ l = cos α = cos 45° = \(\frac { 1 }{ \sqrt { 2 } } \)
m = cos β = cos 60° = \(\frac{1}{2}\)
and n = cos γ
We know that
l2 + m2 + n2 = 1
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 37

MP Board Solutions

Question 6.
Find the vector \(\vec { a } \) which makes an angle with X – axis, F – axis and Z – axis respectively are \(\frac { \pi }{ 4 } \), \(\frac { \pi }{ 2 } \) and angle θ and its magnitude is 5\(\sqrt { 2 } \)?
Solution:
Given:
α = \(\frac { \pi }{ 4 } \),
β = \(\frac { \pi }{ 2 } \), γ = θ
∴l = cos \(\frac { \pi }{ 4 } \) = \(\frac { 1 }{ \sqrt { 2 } } \), m = cos \(\frac { \pi }{ 2 } \) = 0, n = cos θ.
We know that
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 38
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 38a
Direction cosine of vector \(\frac { 1 }{ \sqrt { 2 } } \), 0 , \(\frac { 1 }{ \sqrt { 2 } } \)
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 39

Question 7.
Prove that:
( \(\vec { a } \) × \(\vec { b } \) )2 = a2b2 – ( \(\vec { a } \).\(\vec { b } \) )2?
Solution:
L.H.S = ( ( \(\vec { a } \) × \(\vec { b } \) )2 = ( \(\vec { a } \) × \(\vec { b } \) ).( \(\vec { a } \) ×  \(\vec { b } \) )
= (ab sin θ\(\hat { n } \) ). (ab sin θ \(\hat { n } \) ) = a2 b2 sin2θ,
= a2 b2 (1 – cos2θ)
= a2 b2 – a2 b2cos2θ
= a2 b2 – (ab cos θ)2
= a2 b2 – ( \(\vec { a } \). \(\vec { b } \) )2 = R.H.S Proved.

Question 8.
If \(\vec { a } \) = 2\(\hat { i } \) – 3\(\hat { j } \) + \(\hat { k } \), \(\vec { b } \) = \(\hat { i } \) – \(\hat { j } \) + 2\(\hat { k } \) and \(\vec { c } \) = 2\(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \) then find the value of \(\vec { a } \) × ( \(\vec { b } \) × \(\vec { c } \) )?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 41

MP Board Solutions

Question 9.
Find the volume of parallel cuboid whose vectors of three faces are denoted by: \(\hat { i } \) + \(\hat { j } \) + \(\hat { k } \), \(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \), \(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 42

Question 10.
If \(\vec { a } \) = 2\(\hat { i } \) – 3\(\hat { j } \) + \(\hat { k } \), \(\vec { b } \) = \(\hat { i } \) – \(\hat { j } \) + 2\(\hat { k } \) and \(\vec { c } \) = 2\(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \) then find the value of [ \(\vec { a } \) \(\vec { b } \) \(\vec { c } \) ]
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 43

Question 11.
If \(\vec { a } \) = 3\(\hat { i } \) – \(\hat { j } \) + 2\(\hat { k } \), \(\vec { b } \) = 2\(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \) and \(\vec { c } \) = \(\hat { i } \) – 2\(\hat { j } \) + 2\(\hat { k } \) then, find the value of \(\vec { a } \), \(\vec { b } \), \(\vec { c } \)?
Solution:
Solve like Q.No.10.

MP Board Solutions

Question 12.
If \(\vec { a } \) = \(\hat { i } \) – 2\(\hat { j } \) + 3\(\hat { k } \), \(\vec { b } \) = – \(\hat { i } \) + 3 \(\hat { j } \) – 4 \(\hat { k } \) and \(\vec { c } \) = \(\hat { i } \) – 3\(\hat { j } \) + 5\(\hat { k } \) then prove that \(\vec { a } \), \(\vec { b } \), \(\vec { c } \) are coplanar?
Solution:
If \(\vec { a } \), \(\vec { b } \), \(\vec { c } \) are coplanar then
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 44

Question 13.
Prove that 2\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \), \(\hat { i } \) + 2\(\hat { j } \) – 3\(\hat { k } \) and 3\(\hat { i } \) – 4\(\hat { j } \) + 5k are coplanar?
Solution:
Let \(\vec { a } \) = 2\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \), \(\hat { i } \) + 2\(\hat { j } \) – 3\(\hat { k } \) and 3\(\hat { i } \) – 4\(\hat { j } \) + 5\(\hat { k } \)
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 45

Question 14.
(A) Find the value of λ for which the vectors λ\(\hat { i } \) + 3\(\hat { j } \) + 2\(\hat { k } \), 2\(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) and 2\(\hat { i } \) + 3\(\hat { j } \) + 4\(\hat { k } \) are coplanar?
Solution:
Let \(\vec { a } \) = λ\(\hat { i } \) + 3\(\hat { j } \) + 2\(\hat { k } \), \(\vec { b } \) = 2\(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) and 2\(\hat { i } \) + 3\(\hat { j } \) + 4\(\hat { k } \) are coplanar?
Solution:
Let \(\vec { a } \) = λ\(\hat { i } \) + 3\(\hat { j } \) + 2\(\hat { k } \), \(\vec { b } \) = 2\(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \), \(\vec { c } \) = 2\(\hat { i } \) + 3\(\hat { j } \) + 4\(\hat { k } \)
Given vector are coplanar if
[ \(\vec { a } \) \(\vec { b } \) \(\vec { c } \) ] = 0
\(\left|\begin{array}{lll}
{\lambda} & {3} & {2} \\
{2} & {2} & {3} \\
{2} & {3} & {4}
\end{array}\right|\) = 0
⇒ λ(8 – 9) -2(12 – 6+ 2 (9 – 4) = 0
⇒ -λ – 12 + 10 = 0
⇒ λ = -2.

(B) Find the value of λ for which given vectors are coplanar
\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \), 2\(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \), λ\(\hat { i } \) – \(\hat { j } \) + λ\(\hat { k } \)
Solution:
Solve like Q.No. 14 (A)
Answer:
λ = 1

(C) Find the value of λ for which the given vectors are coplanar 2\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \), \(\hat { i } \) + 2\(\hat { j } \) – 3\(\hat { k } \) and 3\(\hat { i } \) + λ\(\hat { j } \) + 5\(\hat { k } \)?
Solution:
Solve like Q.No. 14 (A)
Answer:
λ = – \(\frac{18}{5}\)

MP Board Solutions

Question 15.
If the angle between two unit vectors \(\vec { a } \) and \(\vec { b } \) is θ then prove that:
cos \(\frac { \theta }{ 2 } \) = \(\frac{1}{2}\) |\(\bar { a } \) + \(\bar { b } \)| is θ then prove that:
sin \(\frac { \theta }{ 2 } \) = \(\frac{1}{2}\) |\(\bar { a } \) – \(\bar { b } \)|
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 47

Question 16.
The angle between two vectors \(\vec { a } \) and \(\vec { b } \) is θ then prove that:
sin \(\frac { \theta }{ 2 } \) = \(\frac{1}{2}\) |\(\bar { a } \) – \(\bar { b } \)|
Solution:
sin \(\frac { \theta }{ 2 } \) = \(\frac{1}{2}\) |\(\bar { a } \) – \(\bar { b } \)|
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 48

Question 17.
In any traiangle prove that ABC?
(A) ac cos B – bc cos A = a2 – b2?
(B) 2(bc cos A + ca cos B + ab cos C) = a2 + b2 + c2?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 49
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 49a

Question 18.
In ∆ABC prove by vector method c = acosB + bcosA?
Solution:
In ∆ABC
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 50
⇒ c2 = ac cos B + bc cos A
⇒ c2 = c(a cos B + b cos A)
⇒ c = a cos B + b cos A. Proved.

Question 19.
In ∆ABC prove by vector method
b2 = a2 + c2 – 2ac cos B?
Solution:
In ∆ABC we know that
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 51
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 51a

Question 20.
In ∆ABC Prove the following:
(A) a2 = b2 + c2 – 2bc cos A?
(B) c2 = a2 + b2 – 2ab cos C?
Solution:
Solve like Q.No. 19

Question 21.
(A) Find the unit vector normal to the vector \(\vec { a } \) = 2\(\hat { i } \) + 2\(\hat { j } \) + \(\hat { k } \) and \(\vec { b } \)
= 4\(\hat { i } \) + 4\(\hat { j } \) – 7\(\hat { k } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 52

(B) Find the unit vector normal to the vectors \(\vec { a } \) = \(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \) and \(\vec { b } \) =
\(\hat { i } \) + 2\(\hat { j } \) – \(\hat { k } \)?
Solution:
Solve like Q.No. 21 (A)

MP Board Solutions

(C) Find the unit vector normal to the vectors \(\vec { a } \) = 3\(\hat { i } \) + \(\hat { j } \) – 2\(\hat { k } \) and \(\vec { b } \) = 2\(\hat { i } \) + 3\(\hat { j } \) – \(\hat { k } \)?
Solution:
Solve like Q.No. (A)
Answer:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 53

Question 22.
Find the unit vector normal to the vectors \(\vec { a } \) = 2\(\hat { i } \) – \(\hat { j } \) + \(\hat { k } \) and \(\vec { b } \) = 3\(\hat { i } \) – 4\(\hat { j } \) – \(\hat { k } \)?
Solution:
Solve like Q.No. 21 (A)
Answer:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 54

Question 23.
Find the area of parallelogram whose digonals are 3\(\hat { i } \) + \(\hat { j } \) – 2\(\hat { k } \) and \(\hat { i } \) – 3\(\hat { j } \) + 4\(\hat { k } \)?
Solution:
ABCD is parallelogram whose diagonals are \(\vec { A } \)C = \(\vec { d } \)1 and \(\vec { B } \)D = \(\vec { d } \)2
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 55

Question 24.
By vector method prove that the square of the hypotenuse of a right angle triangle is equal to the sum of the square of the other two sides?
Solution:
Let OAB be a right angled triangle at O. Taking O as the origin. Let the position vector of \(\vec { a } \) and \(\vec { b } \) be a and b respectively then \(\vec { O } \)A = \(\vec { a } \) and \(\vec { O } \)B = \(\vec { b } \) and ∠BOA = 90°.
∴\(\vec { a } \). \(\vec { b } \) = 0
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 56

Question 25.
Find the moment of force 5\(\hat { i } \) + \(\hat { k } \) passing through the point 9\(\hat { i } \) – \(\hat { j } \) + 2\(\hat { k } \) about the point 3\(\hat { i } \) + 2\(\hat { j } \) + \(\hat { k } \)?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 57
Moment of the force \(\vec { F } \) about the point O = \(\vec { r } \) × \(\vec { F } \)
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 57a

Question 26.
(A) Prove that:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 59
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 60
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 60a

(B) Prove that:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 61

Question 27.
Prove that:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 62
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 62a

Question 28.
Two forces are represented by vectors \(\vec { p } \) = 4\(\hat { i } \) + \(\hat { j } \) – 3\(\hat { k } \) and \(\vec { Q } \) = 3\(\hat { i } \) + \(\hat { j } \) – \(\hat { k } \) displace a particle from points (1,2,3) to point2? (5,4,1)? Find the work done by the forces?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 63

Question 29.
Two forces 4\(\hat { i } \) + 3\(\hat { j } \) and 3\(\hat { i } \) + 2\(\hat { j } \) are acting on a particle, Due to the forces the particle is displaced from the point \(\hat { i } \) + 2\(\hat { j } \) to the point 5\(\hat { i } \) + 4\(\hat { j } \)? Find the work done by the forces?
Solution:
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 64

MP Board Solutions

Question 30.
Alorce of 6 units along the direction of vector 2\(\hat { i } \) – 2\(\hat { j } \) + \(\hat { k } \) acts on a partical? The partical is displaced from point \(\hat { i } \) + 2\(\hat { j } \) + 3\(\hat { k } \) to 5\(\hat { i } \) + 3\(\hat { j } \) + 7\(\hat { k } \). Find the work done by the force?
Solution:
Unit vector parllel to vector 2\(\hat { i } \) – 2\(\hat { j } \) + \(\hat { k } \)
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 65

Question 31.
Prove that |\(\vec { a } \) – \(\vec { b } \) \(\vec { b } \) – \(\vec { c } \) \(\vec { c } \) – \(\vec { a } \)| = 0?
Solution:
We know
MP Board Class 12th Maths Important Questions Chapter 10 Vector Algebra img 66

MP Board Class 12 Maths Important Questions

MP Board Class 12th Hindi Swati Solutions पद्य Chapter 9 विविधा-1

MP Board Class 12th Hindi Swati Solutions पद्य Chapter 9 विविधा-1

विविधा-1 अभ्यास

विविधा-1 अति लघु उत्तरीय प्रश्न

प्रश्न 1.
पृथ्वी का आँचल किस प्रकार का कहा गया है?
उत्तर:
पृथ्वी का आँचल सुनहरी धानों जैसा कहा गया है।

प्रश्न 2.
बसन्त के आमगन पर प्रकृति में क्या-क्या परिवर्तन होते हैं? (2014)
उत्तर:
बसन्त के आगमन पर नवयुवती बेल रूपी दुल्हन ने नवीन कोपलों के वस्त्र धारण कर लिये हैं। भौरे गुंजार कर रहे हैं। बेलों के पुष्पों का हार पहन कर समीर धीरे-धीरे बहने लगता है। धरती रूपी नायिका का सुनहरी धान्य भरा आँचल लहराने लगा है।

प्रश्न 3.
‘धरती और बसन्त’ का आपस में क्या नाता है? (2017)
उत्तर:
धरती मानव है तो बसन्त मानवता है। यही नाता दोनों का है।

प्रश्न 4.
नये-नये फूल कवि को कैसे लगते हैं?
उत्तर:
नये-नये लाल फूल कवि को ऐसे लगते हैं मानो मनुष्य के हृदय के भीतर जलने वाली क्रान्ति विधात्री आग का ही प्रतिरूप हो।

MP Board Solutions

विविधा-1 लघु उत्तरीय प्रश्न

प्रश्न 1.
‘पल्लव वसना’ किसे कहा गया है? (2016)
उत्तर:
पल्लव वसना’ सूखी-सी डाल को कहा गया है जो बसन्त के आने पर पल्लवों से वस्त्रधारिणी बनेगी। वह डाली उस शैलपुत्री के समान है जिसने पत्ते भी खाना छोड़ दिया था और सूख गई थी। वह सूखी डाली बसन्त के आने पर पल्लवों से वस्त्रधारिणी बनेगी।

प्रश्न 2.
शिपार्वती और सूखी डाली के बीच कौन-कौनसी समानताएँ हैं?
उत्तर:
शिव को पति के रूप में प्राप्त करने के लिए शैलपुत्री ने पत्ते भी खाना छोड़ दिया था। अतः अत्यन्त कमजोर हो गईं थीं। इधर पतझड़ ऋतु के आने पर डालें पत्तों से रहित हो जाती हैं। फिर बसन्त के आने पर उनमें नवीन पत्ते आ जाते हैं। अर्थात् वह पल्लवों से वस्त्रधारिणी बनती हैं। पार्वती अपनी तपस्या के बाद शिवजी का वरण करेंगी। यह डाल रूपी वधू बसन्त के आने पर बासन्ती वस्त्र पहनेगी।

प्रश्न 3.
“धरती है मानव तो बसन्त मानवता है” कवि की इस उक्ति का आशय समझाइये।
उत्तर:
कवि ने अपनी कविता में बसन्त के सौन्दर्य को मनुष्य के माध्यम से ही व्यक्त किया है। बसन्त में खिले लाल पुष्प मानो मनुष्य के हृदय के भीतर जलने वाली क्रान्ति रूपी आग का ही प्रतिरूप हैं। यह परस्पर आदान-प्रदान है, जो मनुष्य और प्रकृति के बीच निरन्तर चलता रहता है। मनुष्य जब मानवता की भावना से जुड़ता है तभी उसके भीतर बसन्त खिलता है। कवि ने यहाँ धरती को मानव तो बसन्त को मानवता माना है। जिस प्रकार बसन्त धरती पर आकर चारों ओर आल्हाद बिखेर देता है उसी प्रकार मानव जब मानवता को समझ लेता है और उसके हित में भागीदार होता है तो ही बसन्त आता है अर्थात् खुशियाँ छा जाती हैं।

MP Board Solutions

विविधा-1 दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
निराला ने नवोत्कर्ष की बात किसके लिए कही है?
उत्तर:
निराला ने कहा है कि बसन्त आ गया है, जिससे सम्पूर्ण वन आनन्दित हो उठा है और चारों ओर सौन्दर्य का नया उत्कर्ष छा गया है। नवयुवती बेल रूपी दुल्हन ने नवीन कोंपलों के वस्त्र धारण कर लिये हैं और वृक्ष रूपी पति के गले से उमंगित होकर मिल रही है। भौरे गुंजार कर रहे हैं मानो बसन्त की वन्दना में चारण की भाँति गीत गा रहे हों। कोयल के स्वर को सुनकर आकाश के हृदय में प्रसन्नता भर गई है। समीर सुगन्धित फूलों का हार पहने धीरे-धीरे बहने लगा है। तालाब में कमल खिल गये हैं और कली के केशर रूपी केश बिखर गये हैं। बसन्त के आने पर चारों ओर नवोत्कर्ष स्पष्ट लक्षित हो रहा है।

प्रश्न 2.
“मधुव्रत में रत वधू मधुर फल देगी जग को स्वाद तोष दल” के भाव को स्पष्ट कीजिये।
उत्तर:
बसन्त के आगमन पर सूखी डाली बासन्ती वस्त्र धारण करेगी। यह वधू मधु का व्रत लेकर समस्त संसार को स्वाद का सन्तोष प्रदान करने वाला फल देगी। जिस शिव ने जहर को अमृत समझ कर पिया,ऐसे शीघ्र प्रसन्न होने वाले का बल समस्त संसार को उपहार में देगी। यह डाल रूपी वधू बासन्ती वस्त्र पहनेगी। इसका शुष्क एवं रूखापन बसन्त के आगमन पर पीलेपन में परिवर्तित हो जायेगा। यह पूरा वातावरण प्रसन्नता का द्योतक है। पुष्प मधु से भर जाते हैं। प्रस्तुत पंक्ति के दो भाव हैं

पार्वती के पक्ष में :
मधुर मिलन का व्रत लिए अनुरागिनी वधू मधुर फल (प्रिय-मिलन) को प्राप्त करेगी और संसार को सन्तोष रूपी स्वाद का फल प्रसाद रूप में देगी अर्थात् पार्वती भगवान शिव से विवाह करके जो मधुर फल प्राप्त करेंगी उसे जगत को दे देंगी। शीघ्र प्रसन्न होने वाली शिवजी की शक्ति से भी अमृत हो जायेगा।

बसन्त के पक्ष में :
डाल रूपी बधू मधु (बसन्त) के व्रत के मधुर मिलन की प्रतीक्षा में मग्न है और संसार को तृप्ति प्रदान करती फूलों की पाँखुरी से ग्रीष्म रूपी गरल का बसन्त रूपी अमृत बन जायेगा।

प्रश्न 3.
मुक्तिबोध ने प्रकृति को किस रूप में पहचाना है?
उत्तर:
मुक्तिबोध की अनुभूति अत्यन्त गम्भीर तथा मार्मिक है। कल्पना में प्रसूतों की महक है जो भावना सागर की लहरों को मोहित करने वाली है। मुक्तिबोध ने प्रकृति को मानवीय भावनाओं से जोड़ा है। धरती ने जो लाल-लाल फूल खिलाए हैं वे ऐसे लगते हैं जैसे मानव के हृदय में क्रान्ति की ज्वाला के उठते हुए भाव हों। बसन्त मानो पृथ्वी की ही छाया हो जो प्रकृति के ऊपर पड़कर चारों ओर के वातावरण को सुन्दर और सुखद बना देती है। धरती और बसन्त का नाता यह है कि धरती मानो मानव है तो बसन्त मानवता है। मनुष्य जब मानवता की भावना से जुड़ता है तभी उसके अन्दर बसन्त खिलता है। बसन्त में खिले लाल फूल मानो मनुष्य के हृदय के भीतर जलने वाली क्रान्ति रूपी ज्वाला का ही प्रतिरूप हों। बसन्त की प्राकृतिक सुषमा का सम्बन्ध मनुष्य की चेतना से भी है।

प्रश्न 4.
‘मुझमें अपना ज्वलन्त बसन्त निहार लिया’ से कवि का क्या आशय है?
उत्तर:
इस पंक्ति से कवि का तात्पर्य है कि धरती ने अपना धानी घूघट खोल कर मेरे हृदय के ज्वलन्त बसन्त को देख लिया अर्थात् बसन्त में खिले लाल पुष्प मानो हृदय के भीतर जलने वाली क्रान्ति रूपी ज्वाला का ही प्रतिरूप हों। मेरे हृदय में जलती अग्नि रूपी आसव को पीकर धरती ने लाल-लाल फूल खिलाए हैं। उन नये-नये फूलों में भी कवि को अग्नि दिखाई देती है क्योंकि उसके अन्दर भी क्रान्ति की आग सुलग रही है। मेरे अन्दर जो अग्नि की ज्वाला जल रही है वह मुझे बसन्त के लाल-लाल फूलों में दिखाई दे रही है। कवि ने मानव का धरती से तादात्म्य स्थापित किया है। अन्त में कवि ने स्पष्ट कर दिया है कि धरती यदि मानव है तो बसन्त मानवता है। धरती के मानव पर कोई कष्ट आयेगा तो उसे बसन्त भी कष्टदायक प्रतीत होगा। मनुष्य जब मानवता की भावना से जुड़ता है,तभी उसके भीतर बसन्त खिलता है।

MP Board Solutions

प्रश्न 5.
मुक्तिबोध ने नये-नये फूलों का वर्णन किस रूप में किया है?
उत्तर:
मुक्तिबोध के काव्य में विचार तत्त्व की प्रधानता है। बसन्त की प्राकृतिक सुन्दरता का सम्बन्ध मनुष्य की चेतना से है। एक तरह से कवि ने बसन्त के सम्पूर्ण सौन्दर्य को मनुष्य के माध्यम से ही व्यक्त किया है। उन्होंने नये-नये फूलों का वर्णन मनुष्य के हृदय में जलती हुई क्रान्ति की ज्वाला से किया है। नये-नये फूल भी आग भरे लगते हैं। मैंने उनको पहचाना नहीं कि वे मेरे हैं, धरती को कहा वे सब तेरे हैं। धरती ने तो फूल मनुष्य के लिए ही खिलाए हैं। जब मनुष्य के हृदय में कोई संघर्ष चल रहा हो तो वे फूल उसे क्रान्ति को पूर्ण करने का ही उत्साह देते हैं। कवि बसन्त के लाल-लाल फूलों को अपने हृदय में जलती हुई क्रान्ति की ज्वाला के समान मानता है। धरती पर बसन्त तभी सुन्दर लगता है जब मानवता बेवश व पददलित न हो। मानव के समाज में समरसता का होना आवश्यक है। जब तक समाज में विषमता रहेगी बसन्त के फूल हृदय में जलती हुई ज्वाला के समान लगेंगे।

प्रश्न 6.
निम्नलिखित पद्यांशों की सन्दर्भ सहित व्याख्या कीजिये
(1) किसलय वसना ……… तरु पतिका।
(2) हीरक-सी समीर ……. अपर्ण अशना।
(3) धरती ने ……….. निहार लिया।
(4) बसन्त नहीं हूँ ………… बसन्त मानवता है।
उत्तर:
(1) सन्दर्भ :
प्रस्तुत पद्यांश कवि सूर्यकान्त त्रिपाठी ‘निराला’ द्वारा रचित ‘बसन्त गीत’ शीर्षक से उद्धृत है।

प्रसंग :
इस कविता में कवि ने प्रकृति सुन्दरी के सौन्दर्य का वर्णन किया है,जो बसन्त के आगमन पर अति प्रसन्न है। कवि ने यहाँ प्रकृति का मानवीकरण किया है।

व्याख्या :
हे सखि ! बसन्त आ गया है, जिससे सम्पूर्ण वन आनन्दित हो उठा है और चारों ओर सौन्दर्य ही सौन्दर्य छा गया है। नवयुवती बेल रूपी दुल्हन ने नवीन कोंपलों के वस्त्र धारण कर लिये हैं और वृक्ष रूपी प्रिय पति के गले से प्रफुल्लित होकर मिल रही है, इस समय भौरे गुंजार कर रहे हैं तो ऐसा प्रतीत होता है कि बसन्त की वन्दना में चारण की तरह गीत गा रहे हैं। कोयल के स्वर से आकाश भी प्रसन्न हो गया है।

सुगन्ध के भरे हुए पुष्पों का हार पहनकर समीर भी धीरे-धीरे बहने लगा है। वन की आँखों में भी यौवन का जादू जाग उठा है। तालाब में कमल खिल गये हैं और कली के केसर रूपी केश बिखर गये हैं। धरती रूपी नायिका का सुनहरी धान्य भरा अँचल लहराने लगा है।

(2) सन्दर्भ :
प्रस्तुत पद्यांश कवि सूर्यकान्त त्रिपाठी “निराला’ द्वारा रचित ‘वसन बासंती लेगी’ शीर्षक से उधृत है।

प्रसंग :
इस कविता में निराला जी ने बसन्त के आने से सूखी डाली में जो परिवर्तन आता है उसका वर्णन किया है। डाल की उपमा उन्होंने पार्वती से दी है।

व्याख्या :
हे सखि ! सूखी-सी यह डाल बसन्ती रंग का वस्त्र धारण करेगी। देखो, यह डाली पत्ते भी न खाने वाली पार्वती के समान हवा की चमकीली माला से जाप कर तपस्या कर रही है। यह पल्लवों के वस्त्र धारण करेगी। इसने गले में फूलों की माला पहन रखी है। सभी पुष्पों का रस बसन्त उसके हृदय-सरोवर में भर देगा। तब वह कामदेव को हराने वाले शिवजी का वरण करेगी। वह सूखी डाली बासन्ती वस्त्र धारण करेगी। यह वधू मधु का व्रत लेकर समस्त संसार को स्वाद का सन्तोष प्रदान करने वाला फल देगी। जिस शिव ने जहर को अमृत समझकर पिया,ऐसे शीघ्र प्रसन्न होने वाले का बल सम्पूर्ण संसार को उपहार में देगी। यह डाल रूपी वधू बासन्ती वस्त्र पहनेगी। इसका शुष्क एवं रूखापन बसन्त के आगमन पर पीलेपन में परिवर्तित हो जायेगा।

(3) सन्दर्भ :
प्रस्तुत पंक्तियाँ ‘अमृत का चूंट शक्ति के’ नामक कविता से उद्धृत है। इसके रचयिता गजानन माधव मुक्तिबोध’ हैं।

प्रसंग :
इसमें कवि ने बसन्त की प्राकृतिक सुषमा का सम्बन्ध मनुष्य की चेतना से लिया है। बसन्त में खिले लाल पुष्प मानो मनुष्य के हृदय के भीतर जलने वाली क्रान्ति रूपी आग का ही रूप है।

व्याख्या :
कवि कहता है कि आज मैंने शक्तिरूपी अमृत का चूँट पी लिया है अर्थात् मुझमें चेतना और शक्ति आ गई है। धरती ने अपना धानी रंग का चूँघट उठा कर मेरे हृदय के अन्दर जलने वाली क्रान्ति की ज्वाला का बसन्त देख लिया है। धरती पर खिले हुए लाल-लाल फूल मनुष्य के हृदय में जलने वाली क्रान्ति की ज्वाला के समान हैं। नये-नये फूलों में भी अग्नि की ज्वाला दिखाई देती है उस मनुष्य को जो मानवता के लिए संघर्षरत है।

(4) सन्दर्भ :
पूर्ववत्।

प्रसंग :
कवि ने प्रस्तुत पंक्तियों में बताया है कि धरती और बसन्त का गहरा सम्बन्ध है।

व्याख्या :
कवि कहता है कि मैंने धरती के फूलों को अपना नहीं समझा। मैंने सोचा कि ये फूल धरती के हैं, धरती ने कहा कि ये सब तेरे हैं। बसन्त क्या है? बसन्त प्रकृति की लावण्यमयी छाया है जो पृथ्वी पर पड़ती है। धरती और मानव का अटूट नाता है। धरती मानव है तो बसन्त मानवता है। धरती पर जब मानव प्रसन्न होता है तो बसन्त आता है। यह परस्पर आदान-प्रदान है जो मनुष्य और प्रकृति के बीच निरन्तर चलता रहता है।

प्रश्न 7.
‘अमृत का चूंट शक्ति के’ कविता का केन्द्रीय भाव लिखिए। (2010)
उत्तर:

प्रस्तुत कविता ‘बसंत गीत ऋतु-चित्रण के महत्त्वपूर्ण कवि ‘सूर्यकान्त त्रिपाठी ‘निराला’ द्वारा रचित है। इस कविता में कवि ने ऋतुराज बसंत का बड़ा मनोहारी वर्णन किया है।

‘निराला’ छायावाद के श्रेष्ठ कवि हैं। उनकी कविता में समाज,संस्कृति,प्रकृति, अध्यात्म, व्यंग्य आदि भावों का समावेश है। वे निर्भीक कवि हैं। बसन्त वर्णन में तो वे सिद्धहस्त हैं ही। उनकी ऋतुपरक कविताओं में बसन्त के लिए सर्वाधिक स्थान है। प्रस्तुत कविता में बसन्त प्रसन्नता और उत्कर्ष का भाव लेकर आता है। यह मिलन की ऋतु है और रस-रंग का काल है। खेतों में पीताभ फसलें लहरा रही हैं। जीवन का उल्लास और प्रकृति का सौन्दर्य दोनों इस कविता में परिलक्षित होते हैं। पतझड़ में पत्तों से रहित हो जाने वाली डाल बसन्त आते ही पत्र-वसना हो जाती है। उसका तप,त्याग मानो सफल हो गया हो। बसन्त आकर सभी जगह रस भर देगा और सभी अच्छे कार्यों की तरह बसन्त भी इस पृथ्वी पर विस्तारित होगा। इस कविता में सूखी डाली को कवि ने तप करती हुई पार्वती के रूप में स्वीकार किया है। उसकी तपस्या के परिणामस्वरूप ही उसे बसन्त रूपी शिव से विवाह करने का अवसर प्राप्त होता है।

MP Board Solutions

विविधा-1 काव्य सौन्दर्य

प्रश्न 1.
निम्नलिखित शब्दों के पर्यायवाची शब्द लिखिए
बसन्त, मधुप, सरसिज, पल्लव, गरल।
उत्तर:
बसन्त ऋतुराज, बासंत, ऋतुपति। मधुप-भौंरा, भ्रमर, अलि। सरसिज कमल,पंकज,नलिन। पल्लव-पत्ता,पत्र,कोपल। गरल-विष,जहर, हलाहल।

प्रश्न 2.
निम्नलिखित पंक्तियों में से अलंकार पहचान कर लिखिये
(अ) किसलय-वसना नव-वय लतिका
मिली मधुर प्रिय-उर तरु-पतिका
(ब) हीरक-सी-समीर-माला जप
(स) धरती ने खिलाये हैं ज्वलन्त लाल-लाल
उत्तर:
(अ) रूपक व मानवीकरण अलंकार।
(ब) उपमा अलंकार।
(स) पुनरुक्तिप्रकाश।

प्रश्न 3.
निम्नलिखित पंक्तियों में शब्द गुण पहचान कर लिखिए
स्नेह-सरस भर देगा उर-सर स्मर हर को वरेगी
वसन बासंती लेगी।
उत्तर:
माधुर्य गुण है।

प्रश्न 4.
बसन्त नहीं हूँ केवल तेरी ही लावण्यमयी
छाया हूँ, तेरी ही जो मुझ पर ही छा गयी।
उपर्युक्त पंक्तियों में रस पहचान कर लिखिए।
रस का स्थायी-भाव भी लिखिए।
उत्तर:
शृंगार रस। स्थायी भाव-रति।

प्रश्न 5.
मुक्तक काव्य से आप क्या समझते हैं? आपकी पाठ्य-पुस्तक के पद्य भाग में कौन-कौन से पाठ मुक्तक काव्य की श्रेणी में आते हैं?
उत्तर:
मुक्तक काव्य-मुक्तक काव्य में किसी एक अनुभूति,भाव या कल्पना का चित्रण किया जाता है। इसमें प्रत्येक पद स्वतन्त्र एवं अपने आप में पूर्ण होता है। मुक्तक काव्य दो प्रकार के होते हैं-पाठ्य-मुक्तक और गेय मुक्तक। कबीर, तुलसी, वृंद,रहीम आदि कवियों के भक्ति और नीति विषयक दोहे पाठ्य-पुस्तक के अन्तर्गत आते हैं। गेय मुक्तक में भावों की प्रधानता रहती है। सूर, तुलसी,मीरा, प्रसाद, महादेवी वर्मा आदि के गीत गेय मुक्तक हैं।

प्रश्न 6.
निम्न पंक्तियों को पढ़िए तथा नीचे लिखे प्रश्नों के उत्तर दीजिए
उषा सुनहरे तीर बरसाती
जय-लक्ष्मी-सी उदित हुई,
उधर पराजित कालरात्रि भी,
जल में अंतर्निहित हुई।
1. ‘उषा के सुनहरे तीर बरसाने’ से क्या तात्पर्य है?
2. ‘कालरात्रि’ को पराजित क्यों कहा गया है?
3. ‘जय-लक्ष्मी-सी उदित हुई’ पंक्ति में प्रयुक्त अलंकार का नाम लिखिए।
4. उपर्युक्त पद्यांश का भाव लिखिए।
उत्तर:
1. ‘उषा के सुनहरे तीर बरसाने’ से तात्पर्य यह है कि प्रातःकाल सूर्योदय से पूर्व के समय, उषाकाल में पृथ्वी व आकाश में फैला प्रकाश सुनहरा होता है। उस सुनहरे प्रकाश की प्रारम्भिक किरणें ऐसी प्रतीत हो रही हैं,मानो आकाश में कोई सुनहरे तीरों की बारिश कर रहा हो।

2..उषा के आने पर रात्रि का अंधकार नष्ट हो जाता है तथा पृथ्वी पर चारों ओर प्रकाश फैल जाता है। जिस प्रकार युद्ध में हारने वाले का अस्तित्व ही नष्ट हो जाता है, उसी प्रकार दिन के निकलने पर रात का साम्राज्य नष्ट हो, विलुप्त हो जाता है। अतः कालरात्रि’ को पराजित कहा गया है।

3. ‘जय-लक्ष्मी-सी उदित हुई’ पंक्ति में उपमा अलंकार है।

4. भाव-उपर्युक्त पद्यांश में उषाकाल का सजीव चित्रण करते हुए कहा गया है कि जब प्रातःकाल से पहले उषाकाल आता है तो रात्रि का समस्त अंधकार नष्ट होने लगता है और सम्पूर्ण संसार में उषा की लालिमा छा जाती है। धीरे-धीरे दिन के उदय होने पर पृथ्वी एवं आकाश में प्रकाश फैलने लगता है और इस प्रकाश के हाथों पराजित रात का अंधकार विलुप्त हो जाता है अर्थात् रात का समापन होकर दिन का आगमन होने लगता है।

MP Board Solutions

बसंत गीत, वसन बासंती लेगी भाव सारांश

प्रस्तुत कविता ‘बसंत गीत ऋतु-चित्रण के महत्त्वपूर्ण कवि ‘सूर्यकान्त त्रिपाठी ‘निराला’ द्वारा रचित है। इस कविता में कवि ने ऋतुराज बसंत का बड़ा मनोहारी वर्णन किया है।

‘निराला’ छायावाद के श्रेष्ठ कवि हैं। उनकी कविता में समाज,संस्कृति,प्रकृति, अध्यात्म, व्यंग्य आदि भावों का समावेश है। वे निर्भीक कवि हैं। बसन्त वर्णन में तो वे सिद्धहस्त हैं ही। उनकी ऋतुपरक कविताओं में बसन्त के लिए सर्वाधिक स्थान है। प्रस्तुत कविता में बसन्त प्रसन्नता और उत्कर्ष का भाव लेकर आता है। यह मिलन की ऋतु है और रस-रंग का काल है। खेतों में पीताभ फसलें लहरा रही हैं। जीवन का उल्लास और प्रकृति का सौन्दर्य दोनों इस कविता में परिलक्षित होते हैं। पतझड़ में पत्तों से रहित हो जाने वाली डाल बसन्त आते ही पत्र-वसना हो जाती है। उसका तप, त्याग मानो सफल हो गया हो। बसन्त आकर सभी जगह रस भर देगा और सभी अच्छे कार्यों की तरह बसन्त भी इस पृथ्वी पर विस्तारित होगा। इस कविता में सूखी डाली को कवि ने तप करती हुई पार्वती के रूप में स्वीकार किया है। उसकी तपस्या के परिणामस्वरूप ही उसे बसन्त रूपी शिव से विवाह करने का अवसर प्राप्त होता है।

बसंत गीत, वसन बासंती लेगी संदर्भ-प्रसंग सहित व्याख्या

(1) बसंत गीत
सखि बसंत आया।
भरा हर्ष वन के मन,
नवोत्कर्ष छाया।
किसलय-वसना नव-वय-लतिका
मिली मधुर प्रिय-उर तरु-पतिका
मधुप-वृन्द बन्दी
पिक-स्वर नभ सरसाया
लता-मुकुल-हार-गन्ध भार भर
बही पवन बंद मंद मंदतर
जागी नयनों में बन
यौवन की माया।
आवृत सरसी-उर-सरसिज उठे
केशर के केश कली के छूटे
स्वर्ण-शस्य-अंचल
पृथ्वी का लहराया।

शब्दार्थ :
नवोत्कर्ष = नया विकास; किसलय वसना = कोंपल रूपी वस्त्र धारण करने वाली; नव वय लतिका = तरुणी लता; तरु पतिका = वृक्ष ही जिसका पति है; मधुप-वृन्द = भौरों का समूह; मुकुल = कली; सरसी = तालाब; सरसिज = कमल; आवृत्त = ढके हुए; स्वणे-शस्य = पके हुए धान रूपी सुनहरा; अंचल = आँचल।

सन्दर्भ :
प्रस्तुत पद्यांश कवि सूर्यकान्त त्रिपाठी ‘निराला’ द्वारा रचित ‘बसन्त गीत’ शीर्षक से उद्धृत है।

प्रसंग :
इस कविता में कवि ने प्रकृति सुन्दरी के सौन्दर्य का वर्णन किया है,जो बसन्त के आगमन पर अति प्रसन्न है। कवि ने यहाँ प्रकृति का मानवीकरण किया है।

व्याख्या :
हे सखि ! बसन्त आ गया है, जिससे सम्पूर्ण वन आनन्दित हो उठा है और चारों ओर सौन्दर्य ही सौन्दर्य छा गया है। नवयुवती बेल रूपी दुल्हन ने नवीन कोंपलों के वस्त्र धारण कर लिये हैं और वृक्ष रूपी प्रिय पति के गले से प्रफुल्लित होकर मिल रही है, इस समय भौरे गुंजार कर रहे हैं तो ऐसा प्रतीत होता है कि बसन्त की वन्दना में चारण की तरह गीत गा रहे हैं। कोयल के स्वर से आकाश भी प्रसन्न हो गया है।

सुगन्ध के भरे हुए पुष्पों का हार पहनकर समीर भी धीरे-धीरे बहने लगा है। वन की आँखों में भी यौवन का जादू जाग उठा है। तालाब में कमल खिल गये हैं और कली के केसर रूपी केश बिखर गये हैं। धरती रूपी नायिका का सुनहरी धान्य भरा अँचल लहराने लगा है।

काव्य सौन्दर्य :

  1. प्रकृति को नायिका मान कर उसके रूप का वर्णन किया गया है।
  2. सांगरूपक, श्लेष तथा मानवीकरण अलंकार है।
  3. शृंगार रस का वर्णन है।
  4. संस्कृतनिष्ठ समास-प्रधान माधुर्य गुण का प्रयोग हुआ है।

MP Board Solutions

(2) वसन बासंती लेगी
रूखी री यह डाल,
वसन बासंती लेगी।
देख, खड़ी करती तप अपलक,
हीरक-सी-समीर-माला जप।
शैलसुता ‘अर्पण-अशना’
पल्लव-वसना बनेगी
वसन बासन्ती लेगी।
हार गले पहना फूलों का
ऋतुपति सकल सुकृत कूलों का
स्नेह सरस भर देगा उर-सर
स्मर हर को वरेगी
वसन बासंती लेगी।
मधुव्रत में रत वधू मधुर फल
देगी जग को स्वाद-तोष-दल
गरलामृत शिव आशुतोष-बल
विश्व सकल नेगी
वसन बासंती लेगी।

शब्दार्थ :
वसन = वस्त्र; शैलसुता = पार्वती; अर्पण-अशना = पत्तों को भी ग्रहण न करने वाली (पार्वती); सुकृत = पुण्य; स्मर-हर = कामदेव को पराजित करने वाले शिव; नेगी = उपहार देने वाला; गरलामृत = जहररूपी अमृत; आशुतोष = शिव, बासन्ती = बसन्त ऋतु में चलने वाली पवन; ऋतुपति = बसन्त; कूलों = किनारों।

सन्दर्भ :
प्रस्तुत पद्यांश कवि सूर्यकान्त त्रिपाठी “निराला’ द्वारा रचित ‘वसन बासंती लेगी’ शीर्षक से उधृत है।

प्रसंग :
इस कविता में निराला जी ने बसन्त के आने से सूखी डाली में जो परिवर्तन आता है उसका वर्णन किया है। डाल की उपमा उन्होंने पार्वती से दी है।

व्याख्या :
हे सखि ! सूखी-सी यह डाल बसन्ती रंग का वस्त्र धारण करेगी। देखो, यह डाली पत्ते भी न खाने वाली पार्वती के समान हवा की चमकीली माला से जाप कर तपस्या कर रही है। यह पल्लवों के वस्त्र धारण करेगी। इसने गले में फूलों की माला पहन रखी है। सभी पुष्पों का रस बसन्त उसके हृदय-सरोवर में भर देगा। तब वह कामदेव को हराने वाले शिवजी का वरण करेगी। वह सूखी डाली बासन्ती वस्त्र धारण करेगी। यह वधू मधु का व्रत लेकर समस्त संसार को स्वाद का सन्तोष प्रदान करने वाला फल देगी। जिस शिव ने जहर को अमृत समझकर पिया,ऐसे शीघ्र प्रसन्न होने वाले का बल सम्पूर्ण संसार को उपहार में देगी। यह डाल रूपी वधू बासन्ती वस्त्र पहनेगी। इसका शुष्क एवं रूखापन बसन्त के आगमन पर पीलेपन में परिवर्तित हो जायेगा।

काव्य सौन्दर्य :

  1. प्रकृति का मानवीकरण है,जो छायावादी कविता का प्रमुख गुण है।
  2. समास-प्रधान संस्कृतनिष्ठ भाषा होते हुए भी मधुरता लिए है।
  3. रूपक तथा मानवीकरण अलंकार है।
  4. शृंगार रस एवं माधुर्य गुण है।

अमृत का घूँट शक्ति के भाव सारांश।

प्रस्तुत कविता ‘अमृत का चूंट शक्ति के’ नई कविता के महत्त्वपूर्ण कवि ‘गजानन माधव मुक्तिबोध’ द्वारा लिखित है। इस कविता में कवि ने ऋतु-वर्णन का सुन्दर वर्णन किया है।

गजानन माधव मुक्तिबोध’ नई कविता के महत्त्वपूर्ण कवि हैं। इनकी कविताओं में हमारे। समय के अन्तर्विरोध मिलते हैं। इनके काव्य में विचार तत्व प्रधान होता है। इनके प्रारम्भिक काव्य में ऋतु-वर्णन के सुन्दर चित्र प्राप्त होते हैं। बसन्त की प्राकृतिक सुन्दरता का सम्बन्ध मनुष्य। की चेतना से भी है। एक प्रकार से कवि ने बसन्त के पूर्ण सौन्दर्य को मनुष्य के माध्यम से ही व्यक्त किया है। बसन्त में खिले लाल पुष्प मानो मनुष्य के हृदय के भीतर जलने वाली क्रान्ति की ज्वाला के समान हैं। यह परस्पर आदान-प्रदान है जो मनुष्य और प्रकृति के बीच सदा चलता रहता है। मनुष्य जब मानवता की भावना से जुड़ता है,तभी उसके अन्दर बसन्त खिलता है। इस कविता में रूपक के माध्यम से यही सत्य प्रकट किया गया है।

MP Board Solutions

अमृत का घूँट शक्ति के संदर्भ-प्रसंग सहित व्याख्या

(1) आज मैने शक्ति के अमृत का घुट पिया,
धरती ने अपना धानी पूँघट उघार कर
मुझमें अपना ज्वलन्त वसन्त निहार लिया।
मेरी हृदय-अग्नि के आसव को पिये,
अरे धरती ने खिलाये हैं ज्वलन्त लाल-लाल
नये-नये फूल कैसे लगते हैं आग भरे
जीवन-सुहाग भरे !!

शब्दार्थ :
धानी = सुनहरे रंग का; ज्वलन्त = जलता हुआ; निहार = देखना।

सन्दर्भ :
प्रस्तुत पंक्तियाँ ‘अमृत का चूंट शक्ति के’ नामक कविता से उद्धृत है। इसके रचयिता गजानन माधव मुक्तिबोध’ हैं।

प्रसंग :
इसमें कवि ने बसन्त की प्राकृतिक सुषमा का सम्बन्ध मनुष्य की चेतना से लिया है। बसन्त में खिले लाल पुष्प मानो मनुष्य के हृदय के भीतर जलने वाली क्रान्ति रूपी आग का ही रूप है।

व्याख्या :
कवि कहता है कि आज मैंने शक्तिरूपी अमृत का चूँट पी लिया है अर्थात् मुझमें चेतना और शक्ति आ गई है। धरती ने अपना धानी रंग का चूँघट उठा कर मेरे हृदय के अन्दर जलने वाली क्रान्ति की ज्वाला का बसन्त देख लिया है। धरती पर खिले हुए लाल-लाल फूल मनुष्य के हृदय में जलने वाली क्रान्ति की ज्वाला के समान हैं। नये-नये फूलों में भी अग्नि की ज्वाला दिखाई देती है उस मनुष्य को जो मानवता के लिए संघर्षरत है।

काव्य सौन्दर्य :

  1. भाषा संस्कृतनिष्ठ होते हुए भी सरल है।
  2. कवि की अनुभूति अत्यन्त गम्भीर एवं मार्मिक है।
  3. प्रतीक एवं बिम्बों का प्रयोग किया गया है।

(2) मैंने पहचाना भी नहीं कि वे मेरे हैं,
धरती को कहा, तेरे फूल सब तेरे हैं
बसन्त नहीं हूँ,  केवल तेरी ही लावण्यमयी
छाया हूँ, तेरी ही जो मुझ पर छा गयी !!
धरती औ’ बसन्त के समान ही जो नाता है
धरती है मानव तो बसन्त मानवता है !!

शब्दार्थ :
लावण्यमयी = सुन्दरता से भरी।

सन्दर्भ :
पूर्ववत्।

प्रसंग :
कवि ने प्रस्तुत पंक्तियों में बताया है कि धरती और बसन्त का गहरा सम्बन्ध है।

व्याख्या :
कवि कहता है कि मैंने धरती के फूलों को अपना नहीं समझा। मैंने सोचा कि ये फूल धरती के हैं, धरती ने कहा कि ये सब तेरे हैं। बसन्त क्या है? बसन्त प्रकृति की लावण्यमयी छाया है जो पृथ्वी पर पड़ती है। धरती और मानव का अटूट नाता है। धरती मानव है तो बसन्त मानवता है। धरती पर जब मानव प्रसन्न होता है तो बसन्त आता है। यह परस्पर आदान-प्रदान है जो मनुष्य और प्रकृति के बीच निरन्तर चलता रहता है।

काव्य सौन्दर्य :

  1. भाषा सहज और सरल है।
  2. धरती को मानव और बसन्त को मानवता का रूपक दिया गया है।
  3. मानवीकरण की छटा दर्शनीय है।

MP Board Solutions

MP Board Class 12th Hindi Solutions