MP Board Class 9th Maths Solutions Chapter 10 वृत्त Ex 10.5

प्रश्न 1.
संलग्न चित्र में केन्द्र 0 वाले एक वृत्त पर तीन बिन्दु A, B और C इस प्रकार हैं कि ∠BOC = 30° तथा ∠AOB = 60° है। यदि चाप ABC के अतिरिक्त वृत्त पर D एक बिन्दु है, तो ∠ADC ज्ञात कीजिए। (2019)
हल:
चित्रानुसार,
∠AOC = ∠AOB + ∠BOC = 60° + 30° = 90°
(चूँकि ∠AOB = 60° एवं ∠BOC = 30° दिया है)
MP Board Class 9th Maths Solutions Chapter 10 वृत्त Ex 10.5 1
चित्र 10.17
चूंकि ∠ADC = \(\frac { 1 }{ 2 }\)∠AOC
(किसी चाप द्वारा शेष परिधि पर बना कोण उस चाप द्वारा केन्द्र पर बने कोण का आधा होता है)
⇒ ∠ADC = \(\frac { 1 }{ 2 }\) x 90° = 45°
अत: अभीष्ट कोण ∠ADC का मान = 45°.

प्रश्न 2.
किसी वृत्त की एक जीवा वृत्त की त्रिज्या के बराबर है। जीवा द्वारा लघु चाप के किसी बिन्दु पर अन्तरित कोण ज्ञात कीजिए तथा दीर्घ चाप के किसी बिन्दु पर भी अन्तरित कोण ज्ञात
कीजिए।
हल:
MP Board Class 9th Maths Solutions Chapter 10 वृत्त Ex 10.5 2
चित्र 10.18
दिया है : O केन्द्र वाले वृत्त में जीवा
AB = OA = OB (OA, OB वृत्त की त्रिज्याएँ हैं)
⇒ ∠AOB = 60° (समबाहु त्रिभुज का कोण है)
⇒ प्रतिवर्ती ∠AOB = 360° – 60° = 300° (एक बिन्दु पर बने कोणों का योग = 360°)
चूँकि किसी चाप द्वारा शेष परिधि पर बना कोण, केन्द्र पर बने कोण का आधा होता है।
⇒ लघु चाप में बना कोण ∠ACB = \(\frac { 1 }{ 2 }\) x प्रतिवर्ती ∠AOB
= \(\frac { 1 }{ 2 }\) x 300° = 150°
और दीर्घ चाप में बना कोण ∠ADB = \(\frac { 1 }{ 2 }\) x ∠AOB = \(\frac { 1 }{ 2 }\) x 60° = 30°
अत: लघु चाप के किसी बिन्दु पर बना अभीष्ट कोण = 150° एवं दीर्घ चाप के किसी बिन्दु पर बना अभीष्ट कोण = 30°.

MP Board Solutions

प्रश्न 3.
संलग्न चित्र में ∠POR=100°, जहाँ P, Q तथा R केन्द्र O वाले एक वृत्त पर स्थित बिन्दु हैं। ∠OPR ज्ञात कीजिए।
हल:
चित्रानुसार, प्रतिवर्ती ∠POR = 2∠PQR
प्रतिवर्ती ∠POR = 2 x 100° = 200°
∠POR = 360° – 200° = 160° (एक बिन्दु पर बने कोणों का योग = 360°)
चूँकि OP = OR (वृत्त की त्रिज्याएँ हैं)
∠OPR = ∠ORP = x (मान लीजिए)
MP Board Class 9th Maths Solutions Chapter 10 वृत्त Ex 10.5 3
चित्र 10.14
(बराबर भुजाओं के सम्मुख कोण)
अब ∆OPR में चूँकि ∠POR + ∠OPR + ∠ORP = 180° (त्रिभुज के अन्तः कोणों का योग)
⇒ 160° + x + x = 180° ⇒ 2x = 20°
⇒ x = 10°
अत: ∠OPR का अभीष्ट मान = 10°.

प्रश्न 4.
संलग्न चित्र में ∠ABC = 69° और ∠ACB = 31° हो, तो AL ∠BDC ज्ञात कीजिए। (2018, 19)
हल:
चित्रानुसार, ∠ BAC + 690 + 31° = 180° (त्रिभुज के अन्तः कोणों को योग)
MP Board Class 9th Maths Solutions Chapter 10 वृत्त Ex 10.5 4
चित्र 10.15
⇒ ∠BAC = 180° – 100° = 80°
चूँकि ∠BDC = ∠BAC = 80° (एक ही वृत्तखण्ड के कोण हैं)
अतः ∠BDC का अभीष्ट मान = 80°.

प्रश्न 5.
संलग्न चित्र में एक वृत्त पर A, B, C और D चार बिन्दु है। AC और BD एक बिन्दु E पर इस प्रकार प्रतिच्छेद करते हैं। कि ∠ BEC = 130° तथा ∠ECD = 20° है। ∠BAC ज्ञात कीजिए।
हल:
चूँकि ∠ BEC, ∆CDE का बहिष्कोण है।
⇒ ∠BEC = ∠EDC + ∠DCE (बहिष्कोण = अन्तः कोणों का योग)
⇒ 130° = ∠EDC + 20° (कोणों के ज्ञात मान रखने पर)
MP Board Class 9th Maths Solutions Chapter 10 वृत्त Ex 10.5 5
चित्र 10.16
⇒ ∠BDC = ∠EDC
= 130° – 20° = 110° (∠BDC = ∠EDC एक ही कोण है)
चूँकि ∠BAC = ∠BDC = 110° (एक ही वृत्तखण्ड के कोण हैं तथा ∠BDC = 110°)
अतः ∠BAC का अभीष्ट मान = 110°.

MP Board Solutions

प्रश्न 6.
ABCD एक चक्रीय चतुर्भुज है जिसके विकर्ण एक बिन्दु E पर प्रतिच्छेद करते हैं। यदि ∠DBC = 70° और ∠BAC = 30° हो, तो ∠BCD ज्ञात कीजिए। पुनः यदि AB = BC हो, तो ∠ECD ज्ञात कीजिए।
हल:
चूँकि ∠BDC = ∠ BAC = 30° …(1) (एक ही वृत्त खण्ड के कोण हैं तथा ∠ BAC = 30°, दिया है)।
∆CBD में,
∵ ∠ BCD + ∠DBC + ∠BDC = 180° (∆ के अन्तः कोणों का योग है)
⇒ ∠BCD + 70° + 30° = 180° (कोणों में ज्ञात मान रखने पर)
⇒ ∠BCD = 180° – 100° = 80°
अब चूँकि ∆ABC में, AB = BC (दिया है)
MP Board Class 9th Maths Solutions Chapter 10 वृत्त Ex 10.5 6
चित्र 10.17
⇒ ∠BCA =∠BAC = 30° (बराबर-भुजाओं के सम्मुख कोण हैं तथा ∠BAC = 30° दिया है)
∠ECD = ∠BCD- ∠BCA (चित्रानुसार)
⇒ ∠ECD = 80° – 30° = 50° (ज्ञात कोणों के मान रखने पर)
अतः अभीष्ट कोण ∠BCD का मान = 80° एवं पुनश्च कोण ∠ECD का अभीष्ट मान = 50° है।

प्रश्न 7.
यदि एक चक्रीय चतुर्भुज के विकर्ण उसके शीर्षों से जाने वाले वृत्त के व्यास हों, तो सिद्ध कीजिए कि वह एक आयत है।
हल:
दिया है : ABCD एक चक्रीय चतुर्भुज जिसके विकर्ण AC एवं BD वृत्त के व्यास हैं। चूँकि वृत्त के व्यास परस्पर समद्विभाजित करते हैं तथा बराबर होते है।
इसलिए AC एवं BD परस्पर समद्विभाजित करेंगे।
चूँकि AC एवं BD चतुर्भुज ABCD के विकर्ण हैं तथा परस्पर समद्विभाजित करते हैं।
⇒ ABCD एक समान्तर चतुर्भुज होगा।
MP Board Class 9th Maths Solutions Chapter 10 वृत्त Ex 10.5 7
चित्र 10.18
चूँकि ABCD एक चक्रीय चतुर्भुज है।
⇒ ABCD एक आयत होगा। (समान्तर चक्रीय चतुर्भुज एक आयत होता है।)
अत: यदि एक चक्रीय चतुर्भुज के विकर्ण उसके शीर्षों में जाने वाले वृत्त के व्यास हों, तो वह एक आयत होगा। इति सिद्धम्

प्रश्न 8.
यदि किसी समलम्ब की असमान्तर भुजाएँ बराबर हों, तो सिद्ध कीजिए कि वह चक्रीय है।
हल:
दिया है: ABCD एक समलम्ब है जिसकी भुजा AB || DC एवं असमान्तर भुजाएँ AD = BC.
सिद्ध करना है: ABCD एक चक्रीय चतुर्भुज है।
रचना: C से CE || DA रेखाखण्ड खींचिए जो AB के E पर मिलता है।
⇒ AECD एक समान्तर चतुर्भुज है।
⇒ DA = CE(समान्तर चतुर्भुज की सम्मुख भुजाएँ हैं)
⇒ CE = CB [∵ DA = CB दिया है]
उपपत्ति: चूँकि AB || DC (दिया है) एवं CE || DA (रचना से)
MP Board Class 9th Maths Solutions Chapter 10 वृत्त Ex 10.5 8
चित्र 10.19
⇒ ∠CEB = ∠CBE (बराबर भुजाओं के सम्मुख कोण)
चूँकि DA || CE को तिर्यक रेखा AB बिन्दु A और E पर मिलती है।
⇒ ∠DAB = ∠CEB = ∠CBE (संगत कोण है तथा ∠CEB =∠CBE)
चूँकि AB || CD को तिर्यक रेखा (DA बिन्दु A और D पर मिलती है।)।
⇒ ∠ADC + ∠DAB = 180° (एक ही ओर के अन्तः कोणों का योग है)
⇒ ∠ADC + ∠ABC = 180° (∠DAB = CBE 3791C ∠DAB= ∠ABC)
अत: ABCD एक चक्रीय चतुर्भुज है। (सम्मुख कोण सम्पूरक हैं) इति सिद्धम्

प्रश्न 9.
दो वृत्त दो बिन्दुओं B और C पर प्रतिच्छेद करते हैं। B से जाने वाले दो रेखाखण्ड ABD और PBQ वृत्तों को A,D और P, Q पर क्रमशः प्रतिच्छेद करते हुए खींचे गये हैं (देखिए संलग्न चित्र)। सिद्ध कीजिए कि-
∠ACP =∠QCD है।
हल:
MP Board Class 9th Maths Solutions Chapter 10 वृत्त Ex 10.5 9
चित्र 10.20
ज्ञात है : दो बिन्दुओं B और C पर प्रतिच्छेद करते है हुए दो वृत्त B से जाने वाले दो रेखाखण्ड ABD और PBO वृत्तों को क्रमश: A, D और P, Q पर प्रतिच्छेद करते हुए खींचे गए हैं।
AC, PC, DC और QC को मिलाया गया है।
सिद्ध करना है: ∠ACP = ∠QCD
उपपत्ति: चूंकि LACP = ∠ABP …(1) (एक ही वृत्तखण्डACBP के कोण हैं)
चूँकि ∠OCD = ∠QBD …(2) (एक ही वृत्तखण्ड QCBD के कोण हैं)
चूँकि ∠ABP = ∠QBD ….(3) (प्रतिच्छेदी रेखाओं AD एवं PQ में बने सम्मुख कोण)
अतः ∠ACP = ∠QCD. [समीकरण (1), (2) एवं (3) से] इति सिद्धम्

MP Board Solutions

प्रश्न 10.
यदि किसी त्रिभुज की दो भुजाओं को व्यास मानकर वृत्त खींचे जाएँ तो सिद्ध कीजिए कि इन वृत्तों का प्रतिच्छेद बिन्दु तीसरी भुजा पर स्थित है।
हल:
MP Board Class 9th Maths Solutions Chapter 10 वृत्त Ex 10.5 10
चित्र 10.21
ज्ञात है : एक ∆ABC जिसकी भुजाओं AB और AC को ।
व्यास मानकर दो वृत्त खींचे गये हैं जो परस्पर बिन्दु D पर प्रतिच्छेद करते हैं।
सिद्ध करना है : बिन्दु D भुजा BC पर स्थित है।
रचना : AD, BD एवं CD को मिलाइए।
उपपत्ति: ∵ ∠ADB = 90° …(1) (अर्द्ध वृत्त का कोण है)
⇒ ∠ADC = 90° ….(2) (अर्द्ध वृत्त का कोण है)
⇒ ∠ADB + ∠ADC = 90° + 90° = 180° [समीकरण (1) और (2) से]
⇒ ∠BDC = 90° + 90° = 180° [समीकरण (1) और (2) से]
⇒ BDC एक सरल रेखा है।
अतः बिन्दु D भुजा BC पर स्थित है। इति सिद्धम्

प्रश्न 11.
उभयनिष्ठ कर्ण AC वाले दो समकोण त्रिभुज ABC और ADC हैं। सिद्ध कीजिए कि ∠CAD = ∠CBD है।
हल:
MP Board Class 9th Maths Solutions Chapter 10 वृत्त Ex 10.5 11
चित्र 10.22
दिया है : AC उभयनिष्ठ कर्ण पर दो समकोण त्रिभुज ∆ABC एवं ∆ADC, BD को मिलाया।
सिद्ध करना है: ∠CAD = ∠CBD
उपपत्ति : ∠ABC = 90° एवं ∠ADC = 90°
(∆ABC एवं ∆ADC समकोण ∆ हैं)
⇒ ∠ABC + ∠ADC = 90° + 90° = 180°
⇒ चतुर्भुज ABCD एक चक्रीय चतुर्भुज है। (सम्पूरक कोणों का युग्म सम्पूरक है)
अतः ∠CAD = ∠CBD. (एक ही वृत्तखण्ड CBAD के कोण हैं) इति सिद्धम्

प्रश्न 12.
सिद्ध कीजिए कि चक्रीय समान्तर चतुर्भुज आयत होता है।
हल:
ज्ञात है : एक चक्रीय समान्तर चतुर्भुज ABCD.
सिद्ध करना है : ABCD एक आयत है।
उपपत्ति: ∠A = ∠C (समान्तर चतुर्भुज केसम्मुख कोण) …(1)
∵ ∠A + ∠C = 180° (चक्रीय चतुर्भुज के सम्मुख कोणों का योग)…(2)
MP Board Class 9th Maths Solutions Chapter 10 वृत्त Ex 10.5 12
चित्र 10.23
⇒ ∠A = ∠C = 90° [समीकरण (1) और (2) से]
अत: ABCD एक आयत है। (समान्तर चतुर्भुज जिसके कोण समकोण हों, आयत होता है)। इति सिद्धम्

MP Board Class 9th Maths Solutions