MP Board Class 12th Maths Important Questions Chapter 5B Differentiation

Differentiation Important Questions

Differentiation Short Answer Type Questions

Question 1.
Differentiate the function sin(cos x2) with respect to x? (NCERT)
Solution:
Let y = sin (cosx2)
\(\frac { dy }{ dx } \) = \(\frac { d }{ dx } \) sin (cos x2)
= \(\frac { d }{ dx } \) sin t, [Putting cos x2 = t]
= \(\frac { d }{ dt } \) sin t \(\frac { dt }{ dx } \)
= cos t \(\frac { d }{ dx } \) cos x2
= cos (cos x2) \(\frac { d }{ dx } \) cos u, [Putting x2 = u]
= cos (cos x2) \(\frac { d }{ du } \) cos u \(\frac { du }{ dx } \)
= – cos (cos x2) sin u \(\frac { d }{ dx } \) x2
= – 2x cos (cos x2). sin x2.

Question 2.
Differentiate the function y = sec [tan \(\sqrt { x } \) ] with respect to x? (NCERT)
Solution:
Given:
y = sec [tan \(\sqrt { x } \) ]
\(\frac { dy }{ dx } \) = \(\frac { d }{ dx } \) sec [tan \(\sqrt { x } \) ]
= \(\frac { d }{ dx } \) sec t, [Putting tan \(\sqrt { x } \) = t]
= \(\frac { d }{ dt } \) sec t \(\frac { dt}{ dx } \)
= sec t tan t \(\frac { d }{ dx } \) tan \(\sqrt { x } \)
= sec (tan \(\sqrt { x } \)) tan (tan \(\sqrt { x } \)) \(\frac { d }{ dx } \) tan u, [Putting \(\sqrt { x } \) = u]
= sec (tan \(\sqrt { x } \)) tan (tan \(\sqrt { x } \)) sec2 u \(\frac { d }{ dx } \) \(\sqrt { x } \)
= sec (tan \(\sqrt { x } \)) tan (tan \(\sqrt { x } \)) sec2\(\sqrt { x } \) × \(\frac { 1 }{ 2\sqrt { x } } \)

MP Board Solutions

Question 3.
Differentiate the function y = log [cos ex] with respect to x? (NCERT)
Solution:
Given:
y = log [cos ex]
\(\frac { dy }{ dx } \) = \(\frac { d }{ dx } \) [log (cos ex)]
\(\frac { dy }{ dx } \) = \(\frac { d }{ dx } \) log t, [Putting cos ex = t]
= \(\frac { d }{ dt } \) log t \(\frac { dt }{ dx } \)
= \(\frac { 1 }{ t } \). \(\frac { d }{ dx } \) cos ex
= \(\frac { 1 }{ cose^{ x } } \) × \(\frac { d }{ dx } \) cos u, [Putting ex = u]
= \(\frac { 1 }{ cose^{ x } } \). \(\frac { d }{ du } \) cos u \(\frac { du }{ dx } \)
= \(\frac { -sinu }{ cose^{ x } } \). \(\frac { d }{ dx } \) ex
= \(\frac { -(sine^{ x })e^{ x } }{ cose^{ x } } \)
= – ex tan ex

Question 4.
Differentiate the function y = cos [log x + ex] with respect to x? (NCERT)
Given:
y = cos [log x + ex]
\(\frac { dy }{ dx } \) = \(\frac { d }{ dx } \) cos (log x + ex)
\(\frac { dy }{ dx } \) = \(\frac { d }{ dx } \) cos t, [Putting log x + ex = t]
= \(\frac { d }{ dt } \) cos t \(\frac { dt }{ dx } \)
= – sin t \(\frac { d }{ dx } \) (log x + ex)
= – sin (log x + ex) (\(\frac{1}{x}\) + ex)
= – \(\frac { (xe^{ x }+1)sin(logx+e^{ x }) }{ x } \)

Question 5.
Differentiate the function y = cos-1(ex) with respect to x? (NCERT)
Solution:
Given:
y = cos-1 (ex)
∴\(\frac { dy }{ dx } \) = \(\frac { d }{ dx } \) cos-1 (ex)
Putting ex = t,
= \(\frac { d }{ dx } \) cos-1 t = \(\frac { d }{ dt } \) cos-1 t \(\frac { dt }{ dx } \)
= \(\frac { 1 }{ \sqrt { 1-t^{ 2 } } } \) \(\frac { d }{ dx } \) ex
= – \(\frac { e^{ x } }{ \sqrt { 1-e^{ 2x } } } \)

MP Board Solutions

Question 6.
If y + sin y = cos x then find the value of \(\frac { dy }{ dx } \)? (NCERT)
Solution:
Given:
y + sin y = cos x
Differentiating both sides with respect to x,
\(\frac { d }{ dx } \) (y + siny) = \(\frac { d }{ dx } \) cos x
⇒ \(\frac { dy }{ dx } \) + cos y \(\frac { dy }{ dx } \) = – sin x
⇒ \(\frac { dy }{ dx } \) (1 + cos y) = -sin x
⇒ \(\frac { dy }{ dx } \) = \(\frac { -sinx }{ 1+cosy } \)

Question 7.
If 2x + 3y = sin x then find the value of \(\frac { dy }{ dx } \)? (NCERT)
Solution:
Given:
2x + 3y = sin x
Differentiating both sides with respect to x,
\(\frac { d }{ dx } \) (2x + 3y) = \(\frac { d }{ dx } \) sin x
2 \(\frac { d }{ dx } \) x + 3 \(\frac { dy }{ dx } \) = cos x
⇒ 2 + 3 \(\frac { dy }{ dx } \) = cos x – 2
∴ \(\frac { dy }{ dx } \) = \(\frac{cos x – 2}{3}\)

MP Board Solutions

Question 8.
If x = a cos θ, y = a sin θ then find the value of \(\frac { dy }{ dx } \)? (NCERT)
Solution:
Given:
x = a cos θ
y = a sin θ
Differentiating eqn. (1) with respect to θ.
We get, \(\frac { dx }{ d\theta } \) = – a sin θ
Again, \(\frac { dy }{ dx } \) = \(\frac { \frac { dy }{ d\theta } }{ \frac { dx }{ d\theta } } \)
⇒ \(\frac { dy }{ dx } \) = – \(\frac { acos\theta }{ asin\theta } \)
⇒ \(\frac { dy }{ dx } \) = – cot θ.

Question 9.
If x = at2 and y = 2at then find the value of \(\frac { dy }{ dx } \)? (NCERT)
Solution:
Given:
x = at2
\(\frac { dx }{ dt } \) = 2at
y = 2at
\(\frac { dy }{ dt } \) = 2a
Again, \(\frac { dy }{ dx } \) = \(\frac { \frac { dy }{ dt } }{ \frac { dx }{ dt } } \) = \(\frac{2a}{2at}\)
⇒ \(\frac { dy }{ dx } \) = \(\frac { 1 }{ t} \).

Question 10.
If y = x2 + 3x + 2 then find the value of \(\frac { d^{ 2 }y }{ dx^{ 2 } } \)? (NCERT)
Solution:
Given:
y = x2 + 3x + 2
∴ \(\frac { dy }{ dx } \) = 2x + 3.1 + 0
\(\frac { dy }{ dx } \) = 2x + 3
Again differentiating with respect to x,
We get, \(\frac { d }{ dx } \) ( \(\frac { dy }{ dx } \) ) = 2.1 + 0
⇒ \(\frac { d^{ 2 }y }{ dx^{ 2 } } \) = 2.

MP Board Solutions

Question 11.
If y = x3 + tan x then find the value of \(\frac { d^{ 2 }y }{ dx^{ 2 } } \)? (NCERT)
Solution:
Given:
y = x3 + tan x
\(\frac { dy }{ dx } \) = \(\frac { d }{ dx } \) [x3 + tan x]
= \(\frac { d }{ dx } \) x3 + \(\frac { d }{ dx } \) tan x
⇒ \(\frac { dy }{ dx } \) = 3x2 + sec2 x
Again, differentiating with respect to x,
⇒ \(\frac { d }{ dx } \) ( \(\frac { dy }{ dx } \) ) = \(\frac { d }{ dx } \) [3x2 + sec2x]
\(\frac { d^{ 2 }y }{ dx^{ 2 } } \) = 3 \(\frac{d}{dx}\) x2 + \(\frac{d}{dx}\) sec2 x
⇒ \(\frac { d^{ 2 }y }{ dx^{ 2 } } \) = 6x + \(\frac{d}{dx}\) t2, [Putting sec x = t]
= 6x + \(\frac { d }{ dt } \) t2 \(\frac { dt }{ dx } \)
= 6x + 2t \(\frac { d }{ dx } \) sec x
= 6x + 2 sec x.secx tanx
⇒ \(\frac { d^{ 2 }y }{ dx^{ 2 } } \) = 6x + 2 sec2x tan x.

Differentiation Long Answer Type Questions – I

Question 1.
If y = tan-1 \(\frac { x }{ \sqrt { 1+x^{ 2 } } } \) then find the value of \(\frac { dy }{ dx } \)?
Solution:
Given:
y = tan-1 \(\frac { x }{ \sqrt { 1+x^{ 2 } } } \)
Now putting \(\frac { x }{ \sqrt { 1+x^{ 2 } } } \) = t
\(\frac { dy }{ dx } \) = \(\frac { d }{ dt } \) tan-1t. \(\frac { dt }{ dx } \)
= \(\frac { 1 }{ 1+t^{ 2 } } \). \(\frac { d }{ dx } \) \(\frac { x }{ \sqrt { 1+x^{ 2 } } } \)

MP Board Class 12th Maths Important Questions Chapter 5B Differentiation
Again Putting 1 + x2 = u,
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 2
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 2a

Question 2.
If x = a (t + sin t) and y = a(1 – cost) then find the value of \(\frac { dy }{ dx } \)?
Solution:
Given:
x = a (t + sin t)
∴\(\frac { dx }{ dt } \) = a(1 + cos t)
Again y = a (1 – cos t)
∴\(\frac { dy }{ dt } \) = a (0 + sint) = a sin t
Hence \(\frac { dy }{ dx } \) = \(\frac { \frac { dy }{ dt } }{ \frac { dx }{ dt } } \) = \(\frac { asint }{ a(1+cost) } \)
= \(\frac { sint }{ a(1+cost) } \) = \(\frac { 2sint/2cost/2 }{ 2cos^{ 2 }t/2 } \)
⇒ \(\frac { dy }{ dx } \) = tan \(\frac{t}{2}\).

MP Board Solutions

Question 3.
If x = a(2θ – sin 2θ) and y = a(1 – cos 2θ) then find the value of \(\frac { dy }{ dx } \) where θ = \(\frac { \pi }{ 3 } \)? (CBSE 2018)
Solution:
Given:
x = a (2θ – sin 2θ) ………………… (1)
y = a (1 – cos 2θ) ………………………. (2)
Differentiating eqn. (1) with respect to θ, we get
\(\frac { dx }{ d\theta } \) = a(2.1 – cos 2θ.2)
= 2a (1 – cos 2θ)
= 2a.2 sin2θ
= 4a sin2θ
Differentiating eqn. (2) with respect to θ, ………………… (3)
\(\frac { dy }{ d\theta } \) = a (0 + sin 2θ.2)
= 2a sin 2θ
= 2a.2 sin θ cos θ ……………………….. (4)
= 4a sin θ cos θ
Divinding eqn.(4) by eqn.(3),
\(\frac { dy }{ d\theta } \) + \(\frac { dx }{ d\theta } \) = \(\frac { 4asin\theta cos\theta }{ 4asin^{ 2 }\theta } \)
⇒ \(\frac { dy }{ dx } \) = cot θ
When θ = \(\frac { \pi }{ 3 } \), then
\(\frac { dy }{ dx } \) = cot \(\frac { \pi }{ 3 } \) = \(\frac { 1 }{ \sqrt { 3 } } \).

Question 4.
If y = a sin mx + b cos mx then prove that:
\(\frac { d^{ 2 }y }{ dx^{ 2 } } \) + m2y = 0?
Solution:
Given:
y = a sin mx + b cos mx ……………………. (1)
Differentiating eqn. (2) with respect to x,
\(\frac { dy }{ dx } \) = am cos mx – bm sin mx
Differentiating eqn. (2) with respect to x,
\(\frac { d^{ 2 }y }{ dx^{ 2 } } \) = – am2 sin mx – bm2 cos mx
⇒ \(\frac { d^{ 2 }y }{ dx^{ 2 } } \) = – m2 y
∴ \(\frac { d^{ 2 }y }{ dx^{ 2 } } \) + m2 y = 0. Proved.

MP Board Solutions

Question 5.
(A) If y = emsin-1x then prove that (1 – x2) y2 – xy1 – m2y = 0?
Solution:
Given:
y = emsin-1x
\(\frac { dy }{ dx } \) = y1 = emsin-1x. \(\frac { d }{ dx } \) (msin-1x)
⇒ y1 = y.m. \(\frac { 1 }{ \sqrt { 1-x^{ 2 } } } \)
⇒ \(\sqrt { 1-x^{ 2 } } \) y1 = my …………………………. (1)
Again, differentiating with respect to x,
\(\sqrt { 1-x^{ 2 } } \). y2 + y1. \(\frac{1}{2}\) (1 – x2)1/2 (- 2x) = my1
⇒ \(\sqrt { 1-x^{ 2 } } \). y2 – \(\frac { x }{ \sqrt { 1-x^{ 2 } } } \) y1 = m\(\frac { my }{ \sqrt { 1-x^{ 2 } } } \). [from eqn.(1)]
⇒ (1 – x2) y2 – xy1 = m2y
⇒ (1 – x2) y2 – xy1 – m2y = 0. Proved.

Question 5.
(B) If y = emtan-1x then prove that (1 + x2) y2 + (2x – m) y1 = 0?
Solution:
Solve like Q.5 (A)

Question 5.
(C) If y = emcos-1x then prove that (1 – x2) y2 – xy1 – m2 y = 0?
Solution:
Solve like Q.5 (A)

MP Board Solutions

Question 6.
Differentiate sin-1 \(\frac { 2x }{ 1+x^{ 2 } } \) with respect to x?
Solution:
Let y = sin-1 ( \(\frac { 2x }{ 1+x^{ 2 } } \) )
Again let x = tan θ ⇒ θ = tan-1 x
y = sin-1 ( \(\frac { 2tan\theta }{ 1+tan^{ 2 }\theta } \) )
= sin-1 (sin 2θ) = 2θ = 2 tan-1 x
∴\(\frac { dy }{ dx } \) = 2 \(\frac { d }{ dx } \) (tan-1 x) = \(\frac { 2 }{ 1+x^{ 2 } } \)

Question 7.
If y = cot-1 \(\sqrt { \frac { 1+x }{ 1-x } } \) then find \(\frac { dy }{ dx } \)?
Solution:
Given:
y = cot-1 \(\sqrt { \frac { 1+x }{ 1-x } } \)
Let x = cos θ
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 3
Putting in eqn.(1), we get
y = cot-1 (cot \(\frac{θ}{2}\))
⇒ y = \(\frac{θ}{2}\) = \(\frac{1}{2}\) cos-1 x, [∵x = cos θ ⇒ ∴θ = cos-1 x]
Differentiating both sides w.r.t. x,
\(\frac { dy }{ dx } \) = – \(\frac { 1 }{ 2\sqrt { 1-x^{ 2 } } } \)

Question 8.
If y = tan-1 \(\sqrt { \frac { 1+x }{ 1-x } } \) then find \(\frac { dy }{ dx } \)?
Solution:
Solve like Q.No.7
Answer:
\(\frac { dy }{ dx } \) = \(\frac { 1 }{ 2\sqrt { 1-x^{ 2 } } } \)

Question 9.
If y = cot-1 ( \(\frac { cosx+sinx }{ cosx-sinx } \) ) then find the value of \(\frac { dy }{ dx } \)?
Solution:
Given:
y = cot-1 ( \(\frac { cosx+sinx }{ cosx-sinx } \) )
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 4
⇒ \(\frac { dy }{ dx } \) = \(\frac { d }{ dx } \) ( \(\frac { \pi }{ 4 } \) – x) = -1.

Question 10.
y = tan-1 \(\frac { \sqrt { 1+x^{ 2 }-1\quad } }{ x } \) Differentiate with respect to x?
Solution:
Given:
y = tan-1\(\frac { \sqrt { 1+x^{ 2 }-1\quad } }{ x } \) ……………….. (1)
Put x = tan θ in eqn. (1)
∴ θ = tan-1 x
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 5

⇒ y = \(\frac { \theta }{ 2 } \) = \(\frac{1}{2}\) tan-1 x
∴\(\frac { dy }{ dx } \) = \(\frac{1}{2}\) tan-1 x
∴\(\frac { dy }{ dx } \) = \(\frac{1}{2}\) \(\frac { d }{ dx } \) (tan-1 x ) = \(\frac{1}{2}\) \(\frac { 1 }{ (1+x^{ 2 }) } \)

Question 11.
If y = cot-1 \(\left[\frac{\sqrt{1+x^{2}}+1}{x}\right]\) then find the value of \(\frac { dy }{ dx } \)?
Solution:
y = cot-1 \(\left[\frac{\sqrt{1+x^{2}}+1}{x}\right]\)
Put x = tan θ,
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 6
⇒ y = \(\frac{1}{2}\) tan-1x
⇒ \(\frac { dy }{ dx } \) = \(\frac{1}{2}\). \(\frac { 1 }{ 1+x^{ 2 } } \).

Question 12.
If y = xsinx then find the value of \(\frac { dy }{ dx } \)?
Solution:
Given:
y = xsinx
Taking log on both sides with respect to x.
\(\frac { 1 }{ y } \) \(\frac { dy }{ dx } \) = sin x × \(\frac{1}{x}\) + logx cos x
∴\(\frac { dy }{ dx } \) = y.[ \(\frac{sinx}{x}\) + log x.cos x]

MP Board Solutions

Question 13.
If y = \(\sqrt { \frac { 1-x }{ 1+x } } \) then prove that \(\frac { dy }{ dx } \) = \(\frac { y }{ x^{ 2 }-1 } \)?
Solution:
Given:
y = \(\sqrt { \frac { 1-x }{ 1+x } } \)1/2
By taking log , log y = log \(\sqrt { \frac { 1-x }{ 1+x } } \)1/2
⇒ log y = \(\frac{1}{2}\) [log (1 – x) – log (1 + x)]
Differentiating both sides with respect to x,
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 7

Question 14.
If y = (sin x)sinxsinx ………. ∞ then find the value of \(\frac { dy }{ dx } \)?
Solution:
Given:
y = (sin x)sinxsinx ………. ∞
⇒ y = (sin x)y
⇒ log y = y log sin x
Differentiating both sides with respect to x,
\(\frac{1}{y}\) \(\frac{dy}{dx}\) = y \(\frac{d}{dx}\) (log sin x) + log sin x \(\frac{dy}{dx}\)
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 8

Question 15.
(A) If y = \(\sin x+\sqrt{\sin x+\sqrt{\sin x+\ldots+\infty}}\) then prove that:
\(\frac{dy}{dx}\) = \(\frac{cos x}{2y – 1}\)
Solution:
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 9
Differentiating both sides with respect to x,
2y \(\frac{dy}{dx}\) = cos x + \(\frac{dy}{dx}\)
⇒ 2y \(\frac{dy}{dx}\) – \(\frac{dy}{dx}\) = cos x
⇒ (2y – 1) \(\frac{dy}{dx}\) = cos x
∴\(\frac{dy}{dx}\) = \(\frac{cos x}{2y – 1}\).

(B) If y = \(\cot x+\sqrt{\cot x+\sqrt{\cot x+\ldots+\infty}}\) then prove that:
\(\frac{dy}{dx}\) = \(\frac { cosec^{ 2 }x }{ 1-2y } \)
Solution:
Solve like Q.No. 15 (A).

(C) If y = \(\begin{aligned}
&x+\sqrt{\tan x+\sqrt{\tan x+\ldots \infty}}\\
\end{aligned}\) then find the value of \(\frac{dy}{dx}\)?
Solution:
Solve like Q.No 15 (A)

Question 16.
If y = e\($x+e^{x+e^{x+e}}-$\) then prove that:
\(\frac{dy}{dx}\) = \(\frac{y}{1-y}\)?
Solution:
Given: y = e\(x+e^{x+e^{x+e}}-x\)
⇒ y = ex+y
Taking log on both sides,
log y = log ex+y
log y = x + y
Differentiating both sides with respect to x,
\(\frac{1}{y}\) \(\frac{dy}{dx}\) = 1 + \(\frac{dy}{dx}\)
⇒ \(\frac{dy}{dx}\) ( \(\frac{1}{y}\) – 1) = 1
⇒ \(\frac{dy}{dx}\) ( \(\frac{1-y}{y}\) ) = 1
⇒ \(\frac{dy}{dx}\) = \(\frac{y}{1-y}\) Proved.

MP Board Solutions

Question 17.
Differentiate \(\frac { 1 }{ (x+a)(x+b)(x+c) } \) with respect to x?
Solution:
Let y = \(\frac { 1 }{ (x+a)(x+b)(x+c) } \)
Applying log on both sides,
log y = log 1 – log(x + a) – log (x + b) – log(x + c)
Differentiating both sides with respect to x,
\(\frac{1}{y}\) \(\frac{dy}{dx}\) = 0 – \(\frac{1}{x + a}\) – \(\frac{1}{x + b}\) – \(\frac{1}{x + c}\)
⇒ \(\frac{dy}{dx}\) = – y [ \(\frac{1}{x + a}\) + \(\frac{1}{x + b}\) + \(\frac{1}{x + c}\) ]
⇒ \(\frac{dy}{dx}\) = \(\frac { 1 }{ (x+a)(x+b)(x+c) } \) × { \(\frac { 1 }{ x+a } +\frac { 1 }{ x+b } +\frac { 1 }{ x+c } \) }

Question 18.
Differentiate log ( \(\sqrt{x}\) + \(\frac { 1 }{ \sqrt { x } } \) ) with respect to x?
Solution:
Let y = log ( \(\sqrt{x}\) + \(\frac { 1 }{ \sqrt { x } } \) ) ⇒ y = log ( \(\frac { x+1 }{ \sqrt { x } } \) )
⇒ y = log (x + 1) – log \(\sqrt{x}\)
⇒ y = log (x + 1) – \(\frac{1}{2}\) log x
Differentiating both sides with respect to x,
\(\frac{dy}{dx}\) = \(\frac{d}{dx}\) log (x + 1) – \(\frac{1}{2}\). \(\frac{d}{dx}\) log x
⇒ \(\frac{dy}{dx}\) = \(\frac{1}{x + 1}\) – \(\frac{1}{2}\).\(\frac{1}{x}\) = \(\frac{2x-x-1}{2x(x+1)}\)
⇒ \(\frac{dy}{dx}\) = \(\frac{x – 1}{2x(x + 1)}\).

MP Board Solutions

Question 19.
Differentiate y = tan-1 ( \(\frac { sinx }{ 1+cosx } \) ) with respect to x?
Solution:
y = tan-1 ( \(\frac { sinx }{ 1+cosx } \) )
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 10
⇒ y = tan-1 (tan \(\frac{x}{2}\) ) = \(\frac{x}{2}\)
Differentiating both sides with respect to x,
\(\frac{dy}{dx}\) = \(\frac{d}{dx}\) ( \(\frac{x}{2}\) ) = \(\frac{1}{2}\).

Question 20.
Verify Rolle’s theroem for the function f(x) = x2 interval [-1, 1]. (NCERT)
Solution:
Given:
f(x) = x2, a = – 1, b = 1.

  1. f(x) = x2 is a polynomial, hence, f(x) is continous in [-1, 1].
  2. f'(x) = 2x exist for every value of x, Hence it is differentiable in (-1, 1).
  3. f(-1) = (-1)2 = 1, f(1) = (1)2 = 1.

∴ f(-1) = f(1)
There exists a value c in (-1, 1) such that:
∴ f'(c) = 0
⇒ 2c = 0, [∵f'(x) = 2x]
⇒ c = 0 ∈ (-1, 1)
Hence, Rolle’s theorem is verified. Proved.

MP Board Solutions

Question 21.
Verify Rolle’s theroem for the function f(x) = x2 + 2x – 8, x ∈ [-4, 2]? (NCERT)
Solution:
Given:
f(x) = x2 + 2x – 8, a= – 4, b = 2.

  1. f(x) = x2 + 2x – 8 is a polynomial hence f(x) is continous in [-4, 2].
  2. f'(x) = 2x + 2 exist for every value of x, hence it is differentiable in (-4, 2).
  3. f(-4) = (-4)2 + 2 (-4) – 8

= 16 – 8 – 8 = 0
f(2) = (2)2 + 2 × 2 – 8 = 4 + 4 – 8 = 0
∴ f(-4) = f(2).
There exists a value c in (-4, 2),
∴ f'(c) = 0
⇒ 2c + 2 = 0
⇒ c = – 1 ∈ (-4, 2)
Hence, Rolle’s theorem is verified.

Question 22.
Verify Rolle’s theorem for the function f(x) = 2x3 + x2 – 4x – 2?
Solution:
Given:
f(x) = 2x3 + x2 – 4x – 2 …………………… (1)
We know that polynomial functions are continuous for all real values.
∴ f(x) = o
⇒ 2x3 + x2 – 4x – 2 = 0
⇒ x2 (2x + 1) – 2(2x + 1) = 0
⇒ (x2 – 2) (2x + 1) = 0
⇒ x2 = 2, 2x + 1 = 0
⇒ x = ±\(\sqrt { 2 } \), x = – \(\frac{1}{2}\)
⇒ x = – \(\sqrt { 2 } \), \(\sqrt { 2 } \), \(\frac{-1}{2}\)
∴ Interval [-\(\sqrt { 2 } \), \(\sqrt { 2 } \) ].
1. f(x) is continuous in [-\(\sqrt { 2 } \), \(\sqrt { 2 } \) ]
2. f'(x) = 6x2 + 2x – 4 is differentiable in [-\(\sqrt { 2 } \), \(\sqrt { 2 } \)].
3. f(-\(\sqrt { 2 } \)) = 2( \(\sqrt { 2 } \) )3 + (-\(\sqrt { 2 } \) ) 2 – 4 (- \(\sqrt { 2 } \) ) – 2 = 0
and f ( \(\sqrt { 2 } \) ) = 2( \(\sqrt { 2 } \) )3 + ( \(\sqrt { 2 } \) ) 2 – 4( \(\sqrt { 2 } \) ) – 2 = 0
∴ f(- \(\sqrt { 2 } \) ) = f( \(\sqrt { 2 } \) )
There exists a value c in (-\(\sqrt { 2 } \), \(\sqrt { 2 } \) )
∴ f'(c) = 0
⇒ 6c2 + 2c – 4 = 0, [∵f'(x) = 6x2 + 2x – 4]
∴ c = \(\frac { -2\pm \sqrt { 2^{ 2 }-4\times 6\times (-4) } }{ 2\times 6 } \)
c = \(\frac { -2\pm \sqrt { 4+96 } }{ 12 } \)
⇒ c = \(\frac { -2\pm 10 }{ 12 } \)
⇒ c = \(\frac{-2-10}{12}\) and c = \(\frac{-2+10}{12}\)
⇒ c = -1, \(\frac{2}{3}\) ∈ (- \(\sqrt { 2 } \), \(\sqrt { 2 } \) )
Hence, Rolle’s theroem is verified.

MP Board Solutions

Question 23.
Verify Lagrange’s mean value theorem for the function f(x) = x + \(\frac{1}{x}\) on [1, 3].
Solution:
Given:
f(x) = x + \(\frac{1}{x}\) = \(\frac { x^{ 2 }+1 }{ x } \), x ∈ [1, 3]

  1. f(x), x ≠ 0 hence it is a continous function in [1, 3].
  2. f'(x) = 1 – \(\frac { 1 }{ x^{ 2 } } \) is differentiable in (1, 3).
  3. f(1) = 2 and f(3) = \(\frac{10}{3}\)

Hence, f(1) ≠ f(2)
For mean value theorem,
∴ \(\frac { f(b)-f(a) }{ b-a } \) = f'(c)
⇒ \(\frac { f(3)-f(1) }{ 3-1 } \) = 1 – \(\frac { 1 }{ c^{ 2 } } \)
⇒ \(\frac { \frac { 10 }{ 3 } -2 }{ 2 } \) = 1 – \(\frac { 1 }{ c^{ 2 } } \)
⇒ 1 – \(\frac { 1 }{ c^{ 2 } } \) = \(\frac{2}{3}\)
⇒ \(\frac { 1 }{ c^{ 2 } } \) = \(\frac{3-2}{3}\) = \(\frac{1}{3}\)
⇒ c2 = 3
⇒ c = \(\sqrt{3}\) = 1.732 ∈ (1, 3)
Hence, Langrange’s mean value theorem is verified. Proved.

Question 24.
Verify Lagrange’s mean value theorem for the following function f(x) = log x on [1, e]?
Solution:
f(x) = logx, x ∈ [1, e], x > 0.
1. As f(x) = log x, x > 0 is a continuous function, hence f(x) is continuous in [1, e],

2. f'(x) = \(\frac{1}{x}\),
∴ f(x) is differentiable in (1, e).

3. f(1) = log 1 = 0, f(e) = log e = 1.
Now by mean value theorem,
∴ \(\frac{f(e) – f(1)}{e-1}\) = f'(c)
⇒ \(\frac{1-0}{e-1}\) = \(\frac{1}{e}\)
⇒ c = e – 1 ∈ (1, e)
Hence, Langrange’s mean value theorem is verified. Proved.

MP Board Solutions

Question 25.
With the help of Langrange’s value thoerem for the function y = \(\sqrt{x-2}\) in the interval [2, 3]. Find the point where the tangent is parallel to be chord joining the points?
solution:
Given:
f(x) = \(\sqrt{x-2}\), a = 2, b = 3

1. As f(x) = \(\sqrt{x-2}\), x ∈ [2, 3] is defined.
∴ f(x) is continous function for [2, 3].

2. f'(x) = \(\frac { 1 }{ 2\sqrt { x-2 } } \) is defined in interval (2, 3).
∴ f(x) is differentiable in [2, 3]

3. f(2) = 0, f(3) = 1
f(2) ≠ f(3)
Now, by Langrange’s mean value theorem,
∴ \(\frac{f(3)-f(2)}{3-2}\) = f'(c)
⇒ \(\frac{1-0}{1}\) = \(\frac { 1 }{ 2\sqrt { c-2 } } \)
⇒ \(\frac { 1 }{ 2\sqrt { c-2 } } \) = 1
⇒ \(\frac { 1 }{ \sqrt { c-2 } } \) = 2
⇒ \(\sqrt{c-2}\) = \(\frac{1}{2}\)
⇒ c – 2 = \(\frac{1}{4}\)
⇒ c = \(\frac{1}{4}\) + 2 = \(\frac{9}{4}\) = 2.25 ∈ (2,3)
∴ f(c) = \(\sqrt { \frac { 9 }{ 4 } -2 } \) = \(\frac{1}{2}\)
Required points ( \(\frac{9}{4}\), \(\frac{1}{2}\) ).

Differentiation Long Answer Type Questions – II

Question 1.
Differentiate sin-1 [ \(\frac { 2^{ x+1 } }{ 1+4^{ x } } \) ] with respect to x? (NCERT)
Solution:
y = sin -1 [ \(\frac { 2^{ x+1 } }{ 1+4^{ x } } \) ]
⇒ y = sin-1 [ \(\frac { 2.2^{ x } }{ 1+2^{ 2x } } \) ]
Putting 2x = tan θ
Then, θ = tan-1 2x
⇒ y = sin-1 [ \(\frac { 2tan\theta }{ 1+tan^{ 2 }\theta } \) ]
⇒ y = sin-1 [sin 2θ], [∵sin 2θ = \(\frac { 2tan\theta }{ 1+tan^{ 2 }\theta } \) ]
⇒ y = 2θ
⇒ y = 2 tan-1 (2x), [θ = tan-1(2x)]
∴ \(\frac{dy}{dx}\) = 2 \(\frac{d}{dx}\) tan-1 (2x)
Putting 2x = t
⇒ \(\frac{dy}{dx}\) = 2 \(\frac{d}{dx}\) tan-1 t
= 2 \(\frac{d}{dt}\) tan-1 t\(\frac{dt}{dx}\)
⇒ \(\frac{dy}{dx}\) = \(\frac { 2 }{ 1+t^{ 2 } } \) \(\frac{d}{dx}\) (2x),
= \(\frac { 2 }{ 1+2^{ 2x } } \) × 2x log 2
⇒ \(\frac{dy}{dx}\) = \(\frac { 2^{ x+1 }log2 }{ 1+4^{ x } } \)

MP Board Solutions

Question 2.
If y = sin-1 x then prove that: (NCERT)
(1 – x2) \(\frac { d^{ 2 }y }{ dx^{ 2 } } \) – x \(\frac{dy}{dx}\) = 0? (NCERT)
Solution:
Given:
y = sin-1 x ……………………………. (1)
\(\frac{dy}{dx}\) = \(\frac{d}{dx}\) (sin-1 x)
\(\frac{dy}{dx}\) = \(\frac { 1 }{ \sqrt { 1-x^{ 2 } } } \)
\(\frac{d}{dx}\) ( \(\frac{dy}{dx}\) ) = \(\frac{d}{dx}\) t-1/2
Putting 1 – x2 = t
\(\frac { d^{ 2 }y }{ dx^{ 2 } } \) = \(\frac{d}{dx}\) t-1/2
= \(\frac{d}{dt}\) t-1/2 \(\frac{dt}{dx}\)
= – \(\frac{1}{2}\) t-1/2-1 \(\frac{d}{dx}\) (1 – x2)
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 11

Question 3.
If y = tan x + sec x then prove that:
\(\frac { d^{ 2 }y }{ dx^{ 2 } } \) = \(\frac { cosx }{ (1-sinx)^{ 2 } } \)?
Solution:
y = tan x + sec x (given)
\(\frac{dy}{dx}\) = sec2 x + sec x tan x
⇒ \(\frac{dy}{dx}\) = sec x(sec x + tan x)
⇒ \(\frac{dy}{dx}\) = \(\frac{1}{cosx}\) [ \(\frac{1}{cosx}\) + \(\frac{sinx}{cosx}\) ]
= \(\frac { 1+sinx }{ cos^{ 2 }x } \) = \(\frac { 1+sinx }{ 1-sin^{ 2 }x } \)
= \(\frac { 1+sinx }{ (1+sinx)(1-sinx) } \)
⇒ \(\frac{dy}{dx}\) = \(\frac{1}{1-sinx}\)
Again differentiating both sides with respect to x,
\(\frac{d}{dx}\) ( \(\frac{dy}{dx}\) ) = \(\frac{d}{dx}\) ( \(\frac{1}{1-sinx}\)
\(\frac { d^{ 2 }y }{ dx^{ 2 } } \) = \(\frac { (1-sinx).0-1.(0-cosx) }{ (1-sinx)^{ 2 } } \)
⇒ \(\frac { d^{ 2 }y }{ dx^{ 2 } } \) = \(\frac { cosx }{ (1-sinx)^{ 2 } } \)

MP Board Solutions

Question 4.
If y = sin(sinx) then prove that:
y2 + y1 tan x + y cos2 x = 0? (CBSE 2018)
Solution:
y = sin(sin x)
Differentiating w.r.t. x,
y2 = cos (sinx) \(\frac{d}{dx}\) (cos x) + cos x \(\frac{d}{dx}\) {cos (sin x)}
= cos (sin x) (- sinx) + (cos x) [-sin(sin x)] cos x
⇒ y2 = – sin x cos (sin x) – cos2 x sin (sin x)
⇒ y2 = -sin x cos(sin x) – y cos2 x, [from eqn.(1)]
⇒ y2 = [ \(-\frac { sinx }{ cosx } \). cos x] cos(sin x) – y cos2 x
⇒ y2 = – tan x {cos (sin x) cos x} – y cos2
⇒ y2 = -tan x {cos(sin x) cos x} – y cos2 x [from eqn.(2)]
⇒ y2 = (-tan x) y1 – y cos2 x, Proved.
⇒ y2 + y1 tan x + y cos2 x = 0.

Question 5.
If (x2 + y2)2 = xy then find \(\frac{dy}{dx}\)? (CBSE 2018)
Solution:
(x2 + y2)2 = xy
Differentiating with respect to x,
2(x2 + y2) (2x + 2y \(\frac{dy}{dx}\) ) = x \(\frac{dy}{dx}\) + y.1
⇒ 2(x2 + y2). 2x + 2(x2 + y2). 2y \(\frac{dy}{dx}\) = x \(\frac{dy}{dx}\) + y
⇒ [4y(x2 + y2) – x] \(\frac{dy}{dx}\) = y – 4x (x2 + y2)
⇒ \(\frac{dy}{dx}\) = \(\frac { y-4x(x^{ 2 }+y^{ 2 }) }{ 4(x^{ 2 }+y^{ 2 })y-x } \)

MP Board Solutions

Question 6.
If y = 500e7x + 600e-7x then prove that:
\(\frac { d^{ 2 }y }{ dx^{ 2 } } \) = 49 y? (NCERT)
Solution:
Given:
y = 500e7x + 600e-7x …………………….. (1)
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 12

Question 7.
If y = (tan-1 x)2 then prove that:
(x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2? (NCERT)
Solution:
Given:
y = (tan-1 x)2
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 13
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 13a

Question 8.
Differentiate sec-1 ( \(\frac { 1 }{ 2x^{ 2 }-1 } \) ) with respect to: \(\sqrt { x^{ 2 }-1 } \)?
Solution:
Let y1 = sec-1 ( \(\frac { 1 }{ 2x^{ 2 }-1 } \) )
⇒ y1 = cos-1 (2x2 – 1)
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 14
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 14a

Question 9.
Differentiate tan-1 ( \(\frac { 2x }{ 1-x^{ 2 } } \) ) with respect to:
sin-1 ( \(\frac { 2x }{ 1-x^{ 2 } } \) )
Solution:
Let y1 = tan-1 \(\frac { 2x }{ 1+x^{ 2 } } \) and y2 = sin-1 \(\frac { 2x }{ 1+x^{ 2 } } \)
Let x = tan θ, then θ = tan-1 x

⇒ y1 = tan-1 (tan 2θ) and y2 = sin-1 (sin 2θ)
⇒ y1 = 2θ and y2 = 2θ
⇒ y1 = 2 tan-1 x and y2 = 2 tan-1 x
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 15

Question 10.
Differentiate tan-1 ( \(\frac { \sqrt { 1+x^{ 2 }-1 } }{ x } \) ) with respect to x?
Solution:
Let y1 = tan-1 ( \(\frac { \sqrt { 1+x^{ 2 }-1 } }{ x } \) )
Put x = tan θ,
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 16
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 16a

Question 11.
If x \(\sqrt { 1+y } \) + y \(\sqrt { 1+x } \) = 0 then prove that:
\(\frac{dy}{dx}\) = -(1 + x)-2
Solution:
Given:
x\(\sqrt { 1+y } \) + y \(\sqrt { 1+x } \) = 0
⇒ x \(\sqrt { 1+y } \) = -y\(\sqrt { 1+x } \)
Squaring both sides,
x2 (1 + y) = y2 (1 + x)
⇒ x2 + x2y = xy2 + y2
⇒ x2 – y2 + x2y – xy2 = 0
⇒ (x – y) (x + y) + xy (x – y) = 0
⇒ (x – y)(x + y + xy) = 0
⇒ x – y = 0
⇒ x = y
But x ≠ y
∴ x + y + xy = 0
⇒ y (l + x) = – x
∴ y = – \(\frac{x}{1+x}\)
Differentiating both sides with respect to x,
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 17

Question 12.
If xy = ey-x then prove that:
\(\frac{dy}{dx}\) = \(\frac { 2-log_{ e }x }{ (1-log_{ e }x)^{ 2 } } \)
Solution:
Given: xy = ey-x
Applying log on both sides,
∴ loge xy = loge(ey-x)
⇒ y loge x = (y – x) loge e
⇒ y loge x – y = -x
⇒ y(1 – loge x) = x
⇒ y = \(\frac { x }{ 1-log_{ e }x } \)
Differentiating with respect to x,
Again,
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 18

Question 13.
If y\(\sqrt { 1-x^{ 2 } } \) + x \(\sqrt { 1-y^{ 2 } } \) then prove that:
\(\frac{dy}{dx}\) + \($\sqrt{\frac{1-y^{2}}{1-x^{2}}}$\) = 0?
Solution:
Given:
y\(\sqrt { 1-x^{ 2 } } \) + x \(\sqrt { 1-y^{ 2 } } \) = 1.
Let x = sin θ and y = sin ϕ,
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 19

Question 14.
(A) If y = xsin-1x + xx then find the value of \(\frac{dy}{dx}\)?
Solution:
Given:
y = xsin-1x + xx
y = u + v
∴\(\frac{dy}{dx}\) = \(\frac{du}{dx}\) + \(\frac{dv}{dx}\) ……………………. (1)
Where, u = xsin-1x
∴ log u = sin-1 x log x, (taking log both sides)
Differentiating both sides with respect to x,
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 20
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img t
and v = xx
∴ log v = x log x
Differentiating both sides with respect to x,
\(\frac{1}{v}\). \(\frac{dv}{dx}\) = 1.log x + x. \(\frac{1}{x}\)
⇒ \(\frac{dv}{dx}\) = v(log x + 1)
⇒ \(\frac{dv}{dx}\) = xx (log x + 1) ………… (3)∴ From eqn.(1),
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 23

(B) If y = x-1x + xx, then find the value of \(\frac{dy}{dx}\)?
Solution:
Solve like Q.No. 14(A).

Question 15.
If sin y = x sin (a + y) then prove that:
\(\frac{dy}{dx}\) = \(\frac { sin^{ 2 }(a+y) }{ sina } \)?
Solution:
Given:
sin y = x sin (a + y)
⇒ x = \(\frac { siny }{ sin(a+y) } \)
Differentiating with respect to x,
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 24
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 24a

Question 16.
If xy = ex-y then prove that:
\(\frac{dy}{dx}\) = \(\frac { logx }{ (1+logx)^{ 2 } } \)?
Solution:
Given: xy = ex-y
Applying log on both sides,
y log x = (x – y) logea
⇒ y log x = (x – y).1 = x – y
Differentiating both sides with respect to x,
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 25
From eqn.(1),
y log x = x – y
⇒ y log x + y = x
⇒ y(logx + 1) = x
Put the value of y in eqn.(2)
MP Board Class 12th Maths Important Questions Chapter 5B Differentiation img 25a

MP Board Class 12 Maths Important Questions