In this article, we will share MP Board Class 10th Maths Book Solutions Chapter 6 त्रिभुज Ex 6.3 Pdf, These solutions are solved subject experts from the latest edition books.

MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3

प्रश्न 1.
बताइए कि संलग्न आकृति 6.13 में दिए हुए त्रिभुजों के युग्मों के कौन-कौन से युग्म समरूप हैं। उस समरूपता कसौटी को लिखिए, जिसका प्रयोग आपने उत्तर देने में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए।
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 1
हल :
(i) ∵ ∠A = ∠P, ∠B = ∠Q एवं ∠C = ∠R
⇒ ∆ABC ~ ∆PQR [AAA समरूपता]
अतः अभीष्ट ∆ABC ~ ∆PQR समरूप त्रिभुज हैं।

(ii) ∵
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 2
∆ABC ~ ∆QPR [SSS समरूपता]
अतः अभीष्ट ∆ABC ~ ∆QRP समरूप त्रिभुज हैं।

(iii) ∵
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 3
अतः अभीष्ट ∆LMP ≠ ∆DEF समरूप त्रिभुज नहीं हैं।

(iv) ∵
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 4
जो समानुपाती हैं तथा बराबर कोणों को अन्तर्गत करने वाली भुजाएँ हैं।
∆MNL ~ ∆PQR [SAS समरूपता]
अत: अभीष्ट ∆MNL ~ ∆POR समरूप त्रिभुज हैं।

(v) ∵
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 5
एवं ∠A = ∠F = 80°
यहाँ ∠F तो अन्तर्गत है, लेकिन ∠A अन्तर्गत नहीं है।
अत: ∆ABC एवं ∆DEF समरूप त्रिभुज नहीं हैं।

(vi) ∵ ∆DEF में, ∠F = 180° – (70° + 80°) = 180° – 150° = 30°
एवं ∆PQR में, ∠P = 180° – (80° + 30°) = 180° – 110° = 70°
अतः ∠D = ∠P = 70°, ∠E = ∠Q = 80° एवं ∠F = ∠R = 30°
∆DEF ~ ∆PQR [AAA समरूपता]
अत: अभीष्ट ∆DEF ~ ∆PQR समरूप त्रिभुज हैं।

प्रश्न 2.
संलग्न आकृति 6.14 में ∆ODC ~ ∆OBA, ∠BOC = 125° और ∠CDO = 70° हैं। ∠DOC, ∠DCO और ∠OAB ज्ञात कीजिए।
हल :
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 6
∵ ∠DOC + ∠COB = 180° [रैखिक युग्म हैं।]
∵∠DOC = 180° – ∠COB
= 180° – 125° = 55°
[∵∠COB = 125° दिया है।]
∵∠DCO + ∠CDO = ∠COB [∠COB बहिष्कोण है।]
⇒∠DCO + 70° = 125° [∵ ∠CDO = 70° एवं ∠COB = 70° दिए हैं।]
⇒∠DCO = 125° – 70° = 55°
∵∆ODC ~ ∆OBA
⇒∠OAB = ∠OCD = ∠DCO = 55° [संगतकोण हैं]
अतः अभीष्ट ∠DOC = 55°, ∠DCO = 55° एवं ∠OAB = 55°.

प्रश्न 3.
समलम्ब ABCD, जिसमें AB || DC है, के विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं। दो त्रिभजों की समरूपता कसौटी का प्रयोग करते हुए दर्शाइए कि \(\frac{OA}{OC}=\frac{OB}{OD}\) है।
हल :
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 7
ज्ञातहैः एकसमलम्बचतुर्भुज ABCD जिसकीभुजाएँ AB||DC एवं जिसके विकर्ण AC एवं BD परस्पर O बिन्दु पर प्रतिच्छेद करते हैं (देखिए संलग्न आकृति 6.10)
रचना : एक रेखा EF || AB || DC खींचिए।
अब चूँकि ∆ADC में, EF || DC (रचना से)
⇒ \(\frac{A E}{E D}=\frac{A O}{C O}\) ….(1) [प्रमेय : 6.1 से]
चूँकि ∆DAB में, EF || AB (रचना से)
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 8
वैकिल्पक विधि:
समलम्ब ₹ ABCD में AB || DC एवं विकर्ण AC एवं BD बिन्दु O पर प्रतिच्छेद करते हैं। (देखिए संलग्न आकृति 6.11)
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 9
चूँकि AB || DC (दिया है)
एवं AC तिर्यक रेखा है।
∠OAB = ∠OCD …(1) (एकान्तर कोण हैं)
चूँकि AB || DC (दिया है) एवं BD तिर्यक रेखा है।
∠OBA = ∠ODC ….(2) (एकान्तर कोण हैं)
चूँकि ∠AOB = ∠DOC …(3) (शीर्षाभिमुख कोण हैं)
∆AOB एवं ∆COD के तीनों संगत कोण बराबर हैं। [समीकरण (1), (2) एवं (3) से]
∆AOB ~ ∆COD [AAA समरूपता]
\(\frac{B O}{D O}=\frac{A O}{C O}\)
\(\frac{A O}{B O}=\frac{C O}{D O}\)
इति सिद्धम्

प्रश्न 4.
संलग्न आकृति 6.15 में, \(\frac{Q R}{Q S}=\frac{Q T}{P R}\) तथा ∠1 = ∠2 है। दर्शाइए कि ∆PQS ~ ∆TQR
हल :
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 10
∵ ∆PQR में, ∠O = ∠R
[∵ ∆PQR में, ∠PQR = 21 एवं ∠PRQ = ∠2 एवं ∠1 = ∠2 दिया है]
PQ = PR …(1) [बराबर कोणों को सम्मुख भुजाएँ हैं|
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 11
अब ∆PQS एवं ∆TQR में,
चूँकि ∠PQS = ∠TOR = ∠Q
\(\frac{Q S}{Q P}=\frac{Q R}{Q T}\) [समीकरण (3) से]
[जो कि उपरोक्त उभयनिष्ठ कोणों को अन्तर्गत करने वाली भुजाएँ हैं।]
∆PQS ~ ∆TQR. SAS समरूपता]
इति सिद्धम्

MP Board Solutions

प्रश्न 5.
त्रिभुज PQR की भुजाओं PR और QR पर क्रमशः बिन्द S और T इस प्रकार स्थित हैं कि ∠P = ∠RTS है। दर्शाइए कि ∆RPQ ~ ∆RTS.
हल :
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 12
मान लीजिए कि ∆PQR की भुजाओं PR और QR पर बिन्दु S और T इस प्रकार दिए हैं कि ∠P = ∠RTS
अब ∆RPQ और ∆RTS में,
∠RPQ = ∠RTS [दिया है।]
∠QRP= ∠SRT [चित्रानुसार उभयनिष्ठ है]
∆PQR ~ ∆RTS [AA समरूपता]
इति सिद्धम्

प्रश्न 6.
संलग्न आकृति 6.17 में यदि ∆ABE ≅ ∆ACD है, तो दर्शाइए कि ∆ADE ~ ∆ABC.
हल :
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 13
∵ ∆ABE ≅ ∆ACD दिया है
⇒ AB = AC …(1) [CPCT]
AE = AD …(2) [CPCT]
⇒ \(\frac{A E}{A B}=\frac{A D}{A C}\) …(3)
[समीकरण (1) एवं (2) से]
अब ∆ADE और ∆ABC में,
∵∠DAE = ∠BAC [उभयनिष्ठ है]
∵\(\frac{A E}{A B}=\frac{A D}{A C}\) [समीकरण (3) से]
[ये भुजाएँ बराबर कोणों को अन्तर्गत करने वाली भुजाएँ हैं।]
⇒∆ADE ~ ∆ABC.
[SAS समरूपता]
इति सिद्धम्

प्रश्न 7.
संलग्न आकृति 6.18 में शीर्षलम्ब AD और CE परस्पर बिन्दु P पर प्रतिच्छेद करते हैं। दर्शाइए कि :
(i) ∆AEP ~ ∆CDP
(ii) ∆ABD ~ ∆CBE
(iii) ∆AEP ~ ∆ADB
(iv) ∆PDC ~ ∆BEC.
हल:
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 14
∠D = ∠E
[∵ AD ⊥ BC एवं CE ⊥ AB, दिया है]
(i) ∆AEP और ∆CDP में,
∠E = ∠D [दिया है]
∠APE = ∠CPD शीर्षाभिमुख कोण हैं।
∆AEP ~ ∆CDP. [AA समरूपता से]
इति सिद्धम्

(ii) ∆ABD और ∆CBE में,
∠ABD = ∠CBE [चित्रानुसार उभयनिष्ट है]
∠D = ∠E [दिया है।]
∆ABD ~ ∆CBE. [AA समरूपता से]
इति सिद्धम्

(iii) ∆AEP और ∆ADB में,
∠EAP = ∠DAB [चित्रानुसार उभयनिष्ठ हैं]
∠E = ∠D [दिया है]
∆AEP ~ ∆ADB. [AA समरूपता से]
इति सिद्धम्

(iv) ∆PDC और ∆BEC में,
∠D = ∠E [दिया है]
∠PCD = ∠BCE [चित्रानुसार उभयनिष्ठ हैं]
∆PDC ~ ∆BEC. [AA समरूपता से]
इति सिद्धम्

प्रश्न 8.
समान्तर चतुर्भुज ABCD की बढ़ाई गई भुजा AD पर स्थित E एक बिन्दु है तथा BE भुजा CD को F पर प्रतिच्छेद करती है। दर्शाइए कि ∆ABE ~ ∆CFB है।
हल :
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 15
ABCD एक दिया हुआ समान्तर चतुर्भुज है जिसकी बढ़ी हुई भुजा AD पर E कोई बिन्दु है। BE, CD को बिन्दु F पर प्रतिच्छेद करती है।
∆ABE और ∆CFB में,
∵∠A = ∠C [समान्तर चतुर्भुज के सम्मुख कोण हैं]
∵∠ABE = ∠CFB [एकान्तर कोण हैं।]
[∵ AB || DC एवं BE तिर्यक रेखा है।]
∆ABE ~ ∆CFB.
[AA समरूपता से]
इति सिद्धम्

MP Board Solutions

प्रश्न 9.
संलग्न आकृति 6.20 में ABC और AMP दो समकोण त्रिभुज हैं जिनके कोण B और M समकोण हैं। सिद्ध कीजिए कि:
(i) ∆ABC ~ ∆AMP
(ii) \(\frac{C A}{P A}=\frac{B C}{M P}\)
हल :
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 16
(i) ∆ABC और ∆AMP में,
∠B = ∠M = 90° [समकोण दिए हैं।]
∠CAB = ∠PAM [चित्रानुसार उभयनिष्ठ हैं]
∆ABC ~ ∆AMR. [AA समरूपता से]
इति सिद्धम्

(ii) ∆ABC ~ ∆AMP [सिद्ध कर चुके हैं]
\(\frac{C A}{P A}=\frac{B C}{M P}\)
[क्योंकि दो समरूप त्रिभुजों की संगत भुजाएँ समानुपाती होती हैं।]
इति सिद्धम्

प्रश्न 10.
CD और GH क्रमशः ∠ACB और ∠EGF के ऐसे समद्विभाजक हैं कि बिन्दु D और H क्रमशः ∆ABC और ∆FEG की भुजाओं AB और FE पर स्थित है। यदि ∆ABC ~ ∆FEG, तो दर्शाइए कि:
(i) \(\frac{C D}{G H}=\frac{A C}{F G}\)
(ii) ∆DCB ~ ∆HGE
(iii) ∆DCA ~ ∆HGF
हल :
दिया है : ∆ABC ~ ∆FEG, CD एवं GH क्रमशः कोण ∠ACB और ∠EGF के ऐसे समद्विभाजक हैं कि D और H क्रमश: ∆ABC और ∆FEG की भुजाओं AB और FE पर स्थित हैं।
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 17
∆ABC ~ ∆FEG [दिया है]
∠A = ∠F, ∠B = ∠E एवं ∠C = ∠G …(1)
\(\frac{A B}{F E}=\frac{B C}{E G}=\frac{C A}{G F}\) …(2) [समरूप त्रिभुजों के प्रगुण]
∠ACD = ∠BCD = ∠EGH = ∠FGH [बराबर कोणों ∠C एवं ∠G के आधे हैं।]

(i) ∆ACD और ∆FGH में,
चूँकि ∠A = ∠F [समीकरण (1) से]
∠ACD = ∠FGH [समीकरण (3) से]
∆ACD ~ ∆FGH [AA समरूपता]
\(\frac{C D}{G H}=\frac{A C}{F G}\) [समरूप त्रिभुजों के प्रगुण]
इति सिद्धम्

(ii) ∆DCB और ∆HGE में,
चूँकि ∠B = ∠E [समीकरण (1) से]
एवं ∠BCD = ∠EGH [समीकरण (3) से]
∆DCB ~ ∆HGE. [AA समरूपता से]
इति सिद्धम्

(iii) ∆DCA और ∆HGF में,
चूँकि ∠A = ∠F [समीकरण (1) से]
एवं ∠ACD = ∠FGH [समीकरण (3) से]
∆DCA ~ ∆HGF.
[AA समरूपता से]
इति सिद्धम्

प्रश्न 11.
संलग्न आकृति 6.22 में AB = AC वाले एक समद्विबाहु त्रिभुज ABC की बढ़ाई गई भुजा CB पर स्थित E एक बिन्दु है। यदि AD ⊥ BC और EF ⊥ AC है, तो सिद्ध कीजिए कि ∆ABD ~ ∆ECF है।
हल :
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 18
∆ABD और ∆ECF में,
चूँकि ∠B = ∠C
[AB = AC के सम्मुख एवं कोण हैं।]
∠D = ∠F [AD ⊥ BC, EF ⊥ AC]
∆ABD ~ ∆ECE [AA समरूपता से]
इति सिद्धम्

प्रश्न 12.
एक त्रिभुज ABC की भुजाएँ AB और BC तथा माध्यिका AD एक अन्य त्रिभुज PQR की क्रमशः भुजाओं PQ और QR तथा माध्यिका PM के समानुपाती है [देखिए संलग्न आकृति 6.23] । दर्शाइए कि ∆ABC ~ ∆PQR है।
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 19
हल :
दिया है
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 20
[चूँकि AD एवं PM माध्यिकाएँ]
अब ∆ABD और ∆PQM में,
∵ \(\frac{A B}{P Q}=\frac{A D}{P M}=\frac{B D}{Q M}\) [समीकरण (1) एवं (2) में]
⇒ ∆ABD ~ ∆PQM [SSS समरूपता]
⇒ ∠B = ∠Q …(3) [समरूपता त्रिभुजों के प्रगुण]
अब ∆ABC और ∆PQR में,
चूँकि \(\frac{A B}{P Q}=\frac{B C}{Q R}\) [समीकरण (1) से]
एवं ∠B = ∠C [समीकरण (3) से]
⇒ ∆ABC ~ ∆PQR. [SAS समरूपता]
इति सिद्धम्

MP Board Solutions

प्रश्न 13.
एक त्रिभुज ABC की भुजा BC पर एक बिन्दु D इस प्रकार स्थित है कि ∠ADC = ∠BAC है। दर्शाइए कि CA² = CB.CD है।
हल :
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 21
∆ABC की भुजा BC पर कोई बिन्दु D इस प्रकार दिया है कि :
∠ADC = ∠BAC [देखिए संलग्न आकृति 6.24]
∆ABC और ∆DAC में,
‘चूंकि ∠BAC = ∠ADC [दिया है]
∠ACB = ∠DCA [उभयनिष्ठ हैं]
∆ABC ~ ∆DAC [AA समरूपता]
\(\frac{C A}{C D}=\frac{C B}{C A}\) [समरूप त्रिभुजों के प्रगुण]
CA.CA = CB.CD
⇒ CA² = CB.CD.
इति सिद्धम्

प्रश्न 14.
एक त्रिभुज ABC की भुजाएँ AB और AC तथा माध्यिका AD एक अन्य त्रिभुज PQR की भुजाओं PQ और PR तथा माध्यिका PM के क्रमशः समानुपाती हैं। दर्शाइए कि ∆ABC ~ ∆PQR है।
हल :
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 22
दो त्रिभुज ∆ABC एवं ∆PQR दिए हैं जिनकी माध्यिकाएँ क्रमशः AD एवं PM हैं (देखिए संलग्न आकृति 6.25) जिसमें दिया है : \(\frac{A B}{P Q}=\frac{A C}{P R}=\frac{A D}{P M}=k\)
(मान लीजिए) …(1)
AB = kPQ, AC = kPR एवं AD = kPM …….(2)
∵∆ABC में AD माध्यिका है, तो अपोलोनियस प्रमेय से,
AB² + AC² = 2AD² + 2BD² …(3)
k²PQ² + K²PR² = 2k²PM² + 2BD² [समीकरण (2) एवं (3) से]
k²(PQ² + PR² – 2PM²) = 2BD²
∆PQR में PM माध्यिका है, तो अपोलोनियस प्रमेय से,
PQ² + PR² = 2PM² + 2QM²
PQ² + PR² – 2PM² = 2QM²…(5)
k²(2QM²) = 2BD² [समीकरण (4) एवं (5) से]
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 23

प्रश्न 15.
लम्बाई 6 मीटर वाले एक स्तम्भ की भूमि पर छाया की लम्बाई 4 m है जबकि उसी समय एक मीनार की छाया की लम्बाई 28 m है। मीनार की ऊँचाई ज्ञात कीजिए।
हल :
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 24
मान लीजिए AB = 6 cm लम्बा एक स्तम्भ है जिसकी छाया BC की लम्बाई 4 m है एवं ∠ABC = 90° तथा ∠C = x° है। आकृति 6.26(a) एवं PQ = h m (मान लीजिए) कि ‘मीनार की छाया QR की लम्बाई 28 m है एवं ∠PQR = 90° तथा ∠R = x° है।
∠C = ∠R = x° (सूर्य का उन्नयन कोण) एवं ∠B = ∠Q = 90°
∆ABC ~ ∆PQR [AA समरूपता]
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 25
अत: मीनार की अभीष्ट ऊँचाई = 42 cm है।

प्रश्न 16.
AD और PM त्रिभुओं ABC और PQR की क्रमशः माध्यिकाएँ हैं जबकि ∆ABC ~ ∆PQR है। सिद्ध कीजिए कि \(\frac{A B}{P Q}=\frac{A D}{P M}\) है।
हल :
MP Board Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.3 26
दिया है : AD और PM क्रमशः ∆ABC एवं ∆PQR की माध्यिकाएँ हैं और ∆ABC ~ ∆PQR [देखिए संलग्न आकृति 6.27]
चूँकि
∆ABC ~ ∆PQR (दिया है)
∠B = ∠Q …(1) [समरूप त्रिभुजों के प्रगुण]
एवं
\(\frac{A B}{P Q}=\frac{B C}{Q R}\)
[समरूप त्रिभुजों के प्रगुण]
लेकिन BC = 2BD एवं QR = 2QM [D, BC का और M, QR का मध्यबिन्दु है]
\(\frac{A B}{P Q}=\frac{2 B D}{2 Q M}=\frac{B D}{Q M}\) ….(2)
अब ∆ABD एवं ∆PQM में,
∠B = ∠Q [समीकरण (1) से]
\(\frac{A B}{P Q}=\frac{B D}{Q M}\) [समीकरण (2) से]
AABD ~ APQM [SAS समरूपता]
\(\frac{A B}{P Q}=\frac{A D}{P M}\) [समरूप त्रिभुजों के प्रगुण]
इति सिद्धम्

MP Board Solutions

Leave a Reply