MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.3

MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.3

प्रश्न 1.
यदि m = 2 है, तो निम्नलिखित के मान ज्ञात कीजिए:
(i) m – 2
(ii) 3m – 5
(iii) 9 – 5m
(iv) 3m2 – 2m – 7
(v) \(\frac { 5m }{ 2 } \) – 4
हल:
(i) m – 2 ∵ m = 2
∴ m – 2 = 2 – 2 = 0
(ii) 3m – 5 = 3 × 2 – 5 = 6 – 5 = 1

(iii) 9 – 5m = 9 – 5 × 2 = 9 – 10 = -1

(iv) 3m2 – 2m – 7
= 3(2)2 – 2 × 2 – 7
= 3 × 4 – 4 – 7 = 12 – 11 = 1

(v) \(\frac { 5m }{ 2 } \) – 4 = \(\frac{5 \times 2}{2}\) – 4 = 5 – 4 = 1

MP Board Solutions

प्रश्न 2.
यदि p = -2 है, तो निम्नलिखित के मान ज्ञात कीजिए:
(i) 4p + 7
(ii) -3p + 4p + 7
(iii) -2p3 – 3p2 + 4p + 7
हल:
यहाँ p = -2
(i) 4p + 7 = 4 × (-2) + 7 = – 8 + 7 = – 1

(ii) -3p2 + 4p + 7
= -3(-2)2 + 4(-2) + 7
= -3 × 4 – 8 + 7
= – 12 – 8 + 7 = – 13

(iii) -2p3 – 3p2 + 4p + 7
= -2(-2)3 – 3(-2)2 + 4(-2) + 7
= -2(-8) – 3 × 4 – 8 + 7
= 16 – 12 – 8 + 7 = 23 – 20 = 3

प्रश्न 3.
निम्नलिखित व्यंजकों के मान ज्ञात कीजिए, जब x = -1 है:
(i) 2x – 7
(ii) -x + 2
(iii) x2 + 2x + 1
(iv) 2x2 – x – 2
हल:
यहाँ x = -1
(i) 2x – 7 = 2 (-1) – 7 = – 2 – 7 = – 9
(ii) -x + 2 = – (-1) + 2 = 1 + 2 – 3
(iii) x2 + 2x + 1 = (-1)2 + 2(- 1) + 1
= 1 – 2 + 1 = 2 – 2 = 0
(iv) 2x2 – x – 2 = 2 (-1)2 – (-1) – 2
= 2 × 1 + 1 – 2 = 2 + 1 – 2 = 1

MP Board Solutions

प्रश्न 4.
यदि a = 2 और b = -2 हो, तो निम्नलिखित के मान ज्ञात कीजिए:
(i) a2 + b2
(ii) a2 + ab + b2
(iii) a2 – b2
हल:
यहाँ, a = 2 और b = -2
(i) a2 + b2 = (2)2 + (-2)2 = 4 + 4 = 8
(ii) a2 + ab + b2 = (2)2 + 2 (-2) + (-2)2
= 4 – 4 + 4 = 4
(iii) a2 – b2 = (2)2 – (-2)2 = 4 – 4 = 0

प्रश्न 5.
जब a = 0 और b = -1 है, तो दिए हुए व्यंजकों के मान ज्ञात कीजिए:
(i) 2a + 2b
(ii) 2a2 + b + 1
(iii) 2a2b + 2ab2 + ab
(iv) a2 + ab + 2
हल:
यहाँ, a = 0 और b = -1
(i) 2a + 2b = 2 × 0 + 2x (-1)
= 0 – 2 = – 2

(ii) 2a2 + b2 + 1 = 2 × (0)2 + (-1)2 + 1
= 2 × 0 + 1 + 1 = 2

(iii) 2a2b + 2ab2 + ab = 2 (0)2 (-1) + 2 (0) (-1)2 + 0 × (-1)
= 0 + 0 + 0 = 0

(iv) a2 + ab + 2 = (0) + 0 (-1) + 2
= 0 + 0 + 2 – 2

MP Board Solutions

प्रश्न 6.
इन व्यंजकों को सरल कीजिए तथा इनके मान ज्ञात कीजिए, जब x का मान 2 है:
(i) x + 7 + 4 (x – 5)
(ii) 3(x + 2) + 5x – 7
(iii) 6x + 5(x – 2)
(iv) 4(2x – 1)+ 3x + 11
हल:
(i) x + 7 + 4 (x – 5) = x + 7 + 4x – 20
= x + 4x + 7 – 20
= 5x – 13
x = 2 रखने पर, 5x – 13 = 5 × 2 – 13
= 10 – 13 = -3

(ii) 3 (x + 2) + 5x – 7 = 3x + 6 + 5x – 7
= 3x + 5x + 6 – 7
= 8x – 1
x = 2 रखने पर,
8x – 1 – 8 × 2 – 1 = 16 – 1 = 15

(iii) 6x + 5(x – 2) = 6x + 5x – 10
= 11x – 10
x = 2 रखने पर,
11x – 10 = 11 × 2 – 10
= 22 – 10 = 12

(iv) 4(2x – 1) + 3x + 11
= 8x – 4 + 3x + 11
= 8x + 3x – 4 + 11
= 11x + 7
x = 2 रखने पर,
11x + 7 = 11 × 2 + 7 = 22 + 7 = 29

MP Board Solutions

प्रश्न 7.
इन व्यंजकों को सरल कीजिए तथा इनके मान ज्ञात कीजिए, जब x = 3,4 = -1 और b = -2 है :
(i) 3x – 5 – x +9
(ii) 2 – 8x + 4x + 4
(iii) 3a + 5 – 8a + 1
(iv) 10 – 3b – 4 – 5b
(v) 2a – 2b – 4 – 5 + a
हल:
(i) 3x – 5 – x + 9 = 2x + 4
x = 3 रखने पर,
2x + 4 = 2 × 3 + 4
= 6 + 4 = 10

(ii) 2 – 8x + 4x + 4 = 6 – 4x
x = 3 रखने पर,
6 – 4x = 6 – 4 × 3
= 6 – 12 = -6

(iii) 3a + 5 – 8a + 1 = -5a + 6
a = -1 रखने पर,
-5a + 6 = -5 × (-1) + 6
= 5 + 6 = 11

(iv) 10 – 3b – 4 – 5b = 6 – 8b.
b – 2 रखने पर,
6 – 8b = 6 – 8 × (-2)
= 6 + 16 = 22

(v) 2a – 2b – 4 – 5 + a = 3a – 2b – 9
a = -1, b = – 2 रखने पर,
3a – 2b – 9 = 3(- 1)-2(- 2)- 9
= -3 + 4 -9 = -8

MP Board Solutions

प्रश्न 8.
(i) यदि z = 10 है, तो z3 – 3(z – 10) का मान ज्ञात कीजिए।
(ii) यदि p = -10 है, तो p2 – 2p – 100 का मान ज्ञात कीजिए।
हल:
(i) जब z = 10 है, तो 2
z3 – 3(z – 10) = (10)3 – 3(10 – 10)
= 1000 – 3 × 0
= 1000 – 0 = 1000

(ii) जब p = -10 है, तो
p2 – 2p – 100 = (-10)2 – 2(-10) – 100
= 100 + 20 – 100
= 20

प्रश्न 9.
यदि x = 0 पर 2x2 + x – a का मान 5 के बराबर है, तो a का मान क्या होना चाहिए ?
हल:
x = 0 पर, 2x2 + x – a = 5
∴ 2 × (0)2 + 0 – a = 5
या 0 + 0 – a = 5 ⇒ a = -5

प्रश्न 10.
व्यंजक 2(a2 + ab) + 3 – ab को सरल कीजिए और इसका मान ज्ञात कीजिए, जब a = 5 और b = -3 है।
हल:
2 (a2 + ab) + 3 – ab
= 2a2 + 2ab + 3 – ab
= 2a2 + 2ab – ab + 3
= 2a2 + ab + 3
a = 5 और b = – 3 रखने पर,
2a2 + ab + 3 = 2(5)2 + 5 × (-3) + 3
= 2 × 25 + (-15) + 3
= 50 – 15 + 3 = 38

MP Board Solutions

पाठ्य-पुस्तक पृष्ठ संख्या # 261

प्रयास कीजिए

पाठ्य-पुस्तक में दिये गये आधारभूत आकारों को लेकर उपर्युक्त प्रकार के पैटर्न बनाइए :
आकारों को बनाने के लिए आवश्यक रेखाखण्डों की संख्या दाईं ओर लिखी हुई है। साथ ही n आकारों को बनाने के लिए आवश्यक रेखाखण्डों को दर्शाने वाला व्यंजक भी दाईं ओर दिया हुआ है। आगे बढ़िए और ऐसी ही और पैटर्नो की खोज कीजिए।
हल:
MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.3 image 1

पाठ्य-पुस्तक पृष्ठ संख्या # 262

n भुजा वाले किसी बहुभुज के एक शीर्ष से हम कुल
(n – 3) विकर्ण खींच सकते हैं। एक सप्तभुज (7 भुजाएँ) और अष्टभुज (8 भुजाएँ) के लिए उनकी आकृतियाँ
खींच करके इसकी जाँच कीजिए। यह संख्या एक त्रिभुज (3 भुजाएँ) के लिए क्या है ?
हल:
(i) सप्तभुज ABCDEFG में, विकर्ण AC, AD, AE, AF हैं, अर्थात् इसमें 4 विकर्ण हैं। यदि n – 3 में n = 7 रखें, तो विकर्ण = 7 – 3 = 4
MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.3 image 2

(ii) अष्टभुज ABCDEFGH में विकर्ण AC, AD, AE, AF, AG हैं अर्थात् इसमें 5 विकर्ण हैं। यदि n – 3 में n = 8 रखें, तो विकर्ण = 8 – 3 = 5
MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.3 image 3

(iii) ∆ABC में कोई विकर्ण नहीं होता है। यदि n – 3 में n = 3 रखें, तो 3 – 3 = 0
MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.3 image 4

अतः प्रत्येक स्थिति में परिणाम सन्तुष्ट होता है।

पाठ्य-पुस्तक पृष्ठ संख्या # 262-263

MP Board Class 7th Maths Solutions

MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.2

MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.2

प्रश्न 1.
समान पदों को संयोजित (मिलान) करके सरल कीजिए:
(i) 21b – 32 + 7b – 20b
(ii) -z2 + 13z2 – 5z + 7z3 – 15z
(iii)p – (p – q) – q – (q – p)
(iv) 3a – 2b – ab – (a – b + ab) + 3ab + b – a
(v) 5x2y – 5x2 + 3yx2 – 3y2 + x2 – 8xy2 – 3y2
(vi) (3y2 + 5y – 4) – (8y – y2 – 4)
हल:
(i) 21b – 32 + 7b – 20b
= 21b + 7b – 20b – 32
= (21 + 7 – 20) b – 32
= 8b – 32

(ii) – z2 + 13z2 – 5z + 7z3 – 15z
= 7z3 – z2 + 13z2 – 5z – 15z
= 7z3 + (-1 + 13)z2 + (-5 -15) z
= 7z3 + 12z3 – 20z

(iii) p – (p – q) – q – (q – p)
= p – p + q – q – q + p
= p – p + p + q – q – q
= (1 – 1 + 1)p + (1 – 1 – 1)q
= p – q

(iv) 3a – 2b – ab – (a – b + ab) + 3ab + b – a
= 3a – 2b – ab – a + b – ab + 3ab + b – a
= (3a – a – a) + (-2b + b + b) + (-ab -ab + 3ab)
= (3 – 1 – 1)a + (-2 + 1 + 1) b + (- 1 – 1 + 3)ab
= (1)a + (0) b + (1) ab = a + ab

(v) 5x2 y – 5x2 + 3yx2 – 3y2 + x2 – y2 + 8xy2
= (5x2y + 3yx2) + (8xy2) + (-5x2 + x2) + (-3y2 – y2 – 3y2)
= (5 + 3) x2y + 8xy2 + (- 5 + 1)x2 + (- 3 – 1 – 3) y2
= 8x2y + 8xy2 – 4x2 – 7y2

(vi) (3y2 + 5y – 4) – (8y – y2 – 4)
= 3y2 + 5y – 4 – 8y + y2 + 4
= (3y2 + y2) + (5y – 8y) + (- 4 + 4)
= (3 + 1) y2 + (5 – 8) y + (- 4 + 4)
= 4y2 – 3y + 0 = 4y2 – 3y

MP Board Solutions

प्रश्न 2.
जोड़िए:
(i) 3mn, -5mn, 8mn, -4mn
(ii) t – 8tz, 3tz – z, z – 1
(iii) -7mn + 5,12mn + 2, 9mn – 8, -2 mn – 3
(iv) a + b – 3,b – a + 3,a – b + 3
(v) 14x + 10y – 12xy – 13, 18 – 7x – 10y + 8xy,4xy
(vi) 5m – 7n, 3n – 4m + 2, 2m – 3mn – 5
(vii) 4x2y, – 3xy2, -5xy2, 5x2y
(viii) 3p2q2 – 4pq + 5, – 10p2q2, 15 + 9pq + 7p2q2
(ix) ab – 4a, 4b – ab, 4a – 4b
(x) x2 – y2 – 1 – y2 – 1 – x2, 1 – x2 – y2
हल:
(i) अभीष्ट योग
= 3mn + (-5mn) + 8mn + (-4mn)
= [3+ (-5) + 8 + (-4)] mn
= [11 – 9] mn = 2mn

(ii) अभीष्ट योग
= (1 – 8tz) + (3tz – z) + (z – t)
= t – 8tz + 3tz – z + z – t
= (t – t) + (-z + z) + (-8tz + 3tz)
= (1 – 1) t + (- 1 + 1) z + (- 8 + 3) tz
= (0) t + (0) z + (-5)tz = – 5tz

(iii) अभीष्ट योग = (-7mn + 5) + (12mn + 2) + (9mn – 8) + (-2mn – 3)
= -7mn + 5 + 12mn + 2 + 9mn – 8 – 2mm – 3
= (-7mm + 12mn + 9mn – 2mn) + (5 + 2 – 8 – 3)
= (-7 + 12 + 9 – 2) mn + (7 – 11)
= (21 – 9) mn + (-4) = 12mn – 4

(iv) अभीष्ट योग = (a + b – 3) + (b – a + 3) + (a – b + 3)
= a + b – 3 + b – a + 3 + a – b + 3
= ( a – a + a) + (b + b – b) + ( – 3 + 3 + 3)
= (1 – 1 + 1)a + (1 + 1 – 1) b + (- 3 + 6)
= (1) a + (1) b + (3)
= a + b + 3

(v) अभीष्ट योग
= (14x + 10y – 12xy – 13) + (18 – 7x – 10y + 8xy) + 4xy
= 14x + 10y – 12xy – 13 + 18 – 7x – 10y + 8xy + 4xy
= (14x – 7x) + (10y – 10y) + (- 12xy + 8xy + 4xy) + (- 13 + 18)
= (14 – 7) x + (10 – 10)y (- 12 + 8 + 4) xy + (5)
= (7)x + (0)y + (- 12 + 12) xy + (5)
= 7x + (0) y + (0) xy + 5
= 7x + 5.

(vi) अभीष्ट योग
= (5m – 7n) + (3n – 4m + 2) + (2m – 3mn – 5)
= 5m – 7n + 3n – 4m + 2 + 2m – 3mn – 5
= (5m – 4m + 2m) + (-7n + 3n) -3mn + (2 – 5)
= (5 – 4 + 2) m + (- 7 + 3) n – 3 mn – 3
= 3m – 4n – 3mn – 3

(vii) अभीष्ट योग
= 4x2y + (-3xy2) + (-5xy2) + 5x2y
= 4x2y – 3xy – 5xy2 + 5x2y
= (4 + 5) x2y + (- 3 – 5) xy2
= 9x2y – 8xy2

(viii) अभीष्ट योग
= (3p2q2 – 4pq + 5) + (-10 p2q2) + (15 + 9pq + 7p2q2)
= 3p2q2 – 4pq + 5 – 10p2q2 + 15 + 9pq + 7p2q2
= 3p2q2 – 10p2q2 + 7p2q2 – 4pq + 9pq + 5 + 15
= (3 – 10 + 7)p2q2 + (- 4 + 9) pq + (5 + 15)
= (0)p2q2 + 5pq + 20
= 5pq + 20

(ix) अभीष्ट योग
= (ab – 4a) + (4b – ab) + (4a – 4b)
= ab – 4a + 4b – ab + 4a – 4b
= ab – ab – 4a + 4a + 4b – 4b
= (0) ab + (0) a + (0) b
= 0 + 0 + 0 = 0

(x) अभीष्ट योग
= (x2 – y2 – 1) + (y2 – 1 – x2) + (1 – x2 – y2)
= x2 – y2 – 1 + y2 – 1 – x + 1 – x2 – y2
= x2 – x2 – x2 – y2 + y2 – y2 – 1 – 1 + 1
= (1 – 1 – 1) x2 + (- 1 + 1 – 1) y2 + (- 1 – 1 + 1)
= – x2 – y2 – 1

MP Board Solutions

प्रश्न 3.
घटाइए:
(i) y2 में से – 5y2
(ii) – 12xy में से 6xy
(iii) (a + b) में से (a – b)
(iv) b (5 – a) में से a (b – 5)
(v) 4m2 – 3mn + 8 में से – m2 + 5mn
(vi) 5x – 10 में से – x2 + 10x – 5
(vii) 3ab – 2a2 – 2b2 में से 5a2 – 7ab + 5b2
(viii) 5p2 + 3q2 – Pq में से 4pq – 5q2 – 3p2
हल:
(i) अभीष्ट अन्तर
y2 – (-5y2)
= y2 + 5 = 6y2

(ii) अभीष्ट अन्तर = – 12xy – 6xy = -18xy

(iii) अभीष्ट अन्तर
= (a + b) – (a – b) = a + b – a + b
= (1 – 1)a + (1 + 1) b = 2b

(iv) अभीष्ट अन्तर
= b (5 – a) – a (b – 5)
= 5b – ab – ab + 5a
= 5a + 5b + ( – 1 – 1) ab
= 5a + 5b – 2ab

(v) अभीष्ट अन्तर
= (4m2 – 3mn + 8) – (- m2 + 5mn)
= 4m2 – 3mn + 8 + m2 – 5mn
= 4m2 + m2 – 3mn – 5mn + 8
= (4 + 1)m + (- 3 – 5)mn + 8
= 5m2 – 8mn + 8

(vi) अभीष्ट अन्तर
= (5x – 10) – (- x2 + 10x – 5)
= 5x – 10 + x2 – 10 x + 5
= x2 + (5 – 10) x + (- 10 + 5)
= x2 – 5x – 5

(vii) अभीष्ट अन्तर
= (3ab – 2a2 – 2b2) – (5a2 – 7ab + 5b2)
= 3ab – 2a2 – 2b2 – 5a2 + 7ab – 5b2
= -2a2 – 5a2 – 2b2 – 5b2 + 3ab + 7ab
=(- 2 – 5) a2 + (- 2 – 5) b2 + (3 + 7) ab
= -7a – 7b2 + 10ab

(viii) अभीष्ट अन्तर
= (5p2 + 3q2 – pq) – (4pq – 5q2 – 3p2)
= 5p2 + 3q2 – pq – 4pq + 5q2 + 3p2
= 5p2 + 3p2 + 3q2 + 5q2 – pq – 4pq
= (5 + 3)p2 + (3 + 5) q2 + (- 1 – 4)pq
= 8p2 + 8q2 – 5pq

प्रश्न 4.
(a) 2x2 + 3xy प्राप्त करने के लिए x2 + xy + ya में क्या जोड़ना चाहिए?
(b) -3a + 7b + 16 प्राप्त करने के लिए 2a + 8b + 10 में से क्या घटाना चाहिए ?
हल:
(a) अभीष्ट व्यंजक
= (2x2 + 3xy) – (x2 + xy + y2)
= 2x2 + 3xy – x2 – xy – y2
= 2x2 – x2 – y2 + 3xy – xy
= (2 – 1) x2 – y2 + (3 – 1)xy
= x2 – y2 + 2xy

(b) अभीष्ट व्यंजक
= (2a + 8b + 10) – (- 3a + 7b + 16)
= 2a + 8b + 10 + 3a – 7b – 16
= 2a + 3a + 8b – 7b + 10 – 16
= (2 + 3)a + (8 – 7)b + (10 – 16)
= 5a + b – 6

MP Board Solutions

प्रश्न 5.
-x2 – y2 + 6xy + 20 प्राप्त करने के लिए, 3x2 – 4y2 + 5xy + 20 में से क्या निकाल लेना चाहिए?
हल:
अभीष्ट व्यंजक = (3x2 – 4y2 + 5xy + 20) -(- x2 – y2 + 6xy + 20)
= 3x2 – 4y2 + 5xy + 20 + x2 + y2 – 6xy – 20
= 3x2 + x2 – 4y2 + y2 + 5xy – 6xy + 20 – 20
= (3 + 1)x2 + (- 4 + 1) y2 + (5 – 6) xy + (20 – 20)
= 4x2 – 3y2 – xy + 0
= 4x2 – 3y2 – xy

MP Board Solutions

प्रश्न 6.
(a) 3x – y + 11 और – y – 11 के योग में से 3x – y – 11 को घटाइए।
(b) 4 + 3x और 5 – 4x + 2x2 के योग में से 3x2 – 5x और – x2 + 2x + 5 के योग को घटाइए।
हल:
(a) 3x – y + 11 और – y – 11 का योग
= (3x – y + 11) + (- y – 11)
= 3x – y + 11 – y – 11
= 3x – y – y + 11 – 11
= 3x – 2y
अब 3x – 2y में से 3x – y – 11 को घटाने पर,
अभीष्ट अन्तर = (3x – 2y) – (3x – y – 11)
= 3x – 2y – 3x + y + 11
= (3x – 3x) + (-2y + y) + 11
= 0 – y + 11
= – y + 11

(b) 4 + 3x और 5 – 4x + 2x2 का योग
= 4 + 3x + 5 – 4 x + 2x2
= (4 + 5) + (3x – 4x) + 2x2
= 9 – x + 2x2
3x2 – 5x और = x2 + 2x + 5 का योग
= 3x2 – 5x – x2 + 2x + 5
= 3x2 – x2 – 5x + 2x + 5
= (3 – 1)x2 + (- 5 + 2)x + 5
= 2x2 – 3x + 5
अब, प्रश्नानुसार
अभीष्ट अन्तर = (9 – x + 2x2) – (2x2 – 3x + 5)
= 9 – x + 2x2 – 2x2 + 3x – 5
= (9 – 5) + (- x + 3x) + (2x2 – 2x2)
= 4 + (- 1 + 3)x + (2 – 2) x2
= 4 + (2)x + (0) x2
= 4 + 2x ⇒ 2x +4
पाठ्य-पुस्तक पृष्ठ संख्या # 258

MP Board Class 7th Maths Solutions

MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.1

MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.1

प्रश्न 1.
निम्नलिखित स्थितियों में चरों, अचरों और अंकगणितीय संक्रियाओं का प्रयोग करते हुए बीजीय व्यंजक प्राप्त कीजिए –

  1. संख्या y में से z को घटाना।
  2. संख्याओं x और y के योग का आधा।
  3. संख्या z को स्वयं उससे गुणा किया जाता है।
  4. संख्याओं p और q के गुणनफल का एक-चौथाई।
  5. दोनों संख्याओं x और y के वर्गों को जोड़ा जाता है।
  6. संख्याओं m और n के गुणनफल के तीन गुने में संख्या 5 जोड़ना।
  7. 10 में से संख्याओं y और z के गुणनफल को घटाना।
  8. संख्याओं a और b के गुणनफल में से उनके योग को घटाना।

हल:

  1. y – 2
  2. \(\frac { 1 }{ 2 } \) = (x + y)
  3. z2
  4. \(\frac { 1 }{ 4 } \)pq
  5. x2 + y2
  6. 3mn + 5
  7. 10 – yz
  8. ab – (a + b)

MP Board Solutions

प्रश्न 2.
(i) निम्नलिखित व्यंजकों में पदों और उनके गुणनखण्डों को छाँटिए। पदों और उनके गुणनखण्डों को पेड़ आरेख द्वारा भी दर्शाइए :
(a) x – 3
(b) 1 + x + x2
(c) y – y3
(d) 5x2 + 7x2y
(e) – ab + 2b2 – 3a2
(ii) नीचे दिए गए व्यंजकों में,पदों और उनके गुणनखण्डों को छाँटिए :
(a) -4x + 5
(b) -4x + 5y
(c) 5y + 3y2
(d) xy + 2x2y2
(e) Pq + q
(f) 1.2ab – 2.4b + 3.6a
(g) \(\frac { 3 }{ 4 } \)x + \(\frac { 1 }{ 4 } \)
(h) 0.12p2 + 0.2q2
हल:
(i) (a) x – 3
MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.1 image 1
(b) 1 + x + x2
MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.1 image 2
(c) y – y3
MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.1 image 3
(d) 5x2 + 7x2y
MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.1 image 4
(e) – ab + 2b2 – 3a2
MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.1 image 5

(ii) हल:
MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.1 image 6

प्रश्न 3.
निम्नलिखित व्यंजकों में पदों के संख्यात्मक गुणांकों जो अचर न हों, की पहचान कीजिए :
(i) 5 – 3t2
(ii) 1 + t + t2 + t3
(iii) x + 2xy + 3y
(iv) 100m + 1000n
(v) -p2q2 + 7pq
(vi) 1.2a + 0.8b
(vii) 3.14 r2
(viii) 2(l + b)
(ix) 0.1 y + 0.01 y2
हल:
MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.1 image 7

MP Board Solutions

प्रश्न 4.
(a) वे पद पहचानिए जिनमें x है और फिर इनमें x का गुणांक लिखिए:
(i) y2x + y
(ii) 13y2 – 8yx
(iii) x + y + z
(iv) y + z + zx
(v) 1 + x + xy
(vi) 12xy + 25
(vii) 7 + xy2

(b) वे पद पहचानिए जिनमें है और फिर इनमें y2 का गुणांक लिखिए :
(i) 8 – xy2
(ii) 5y2 + 7x
(iii) 2x2y – 15xy2 + 7y2
हल:
(a)
MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.1 image 8
(b)
MP Board Class 7th Maths Solutions Chapter 12 बीजीय व्यंजक Ex 12.1 image 9

प्रश्न 5.
निम्नलिखित व्यंजकों को एकपदी, द्विपद और त्रिपद के रूप में वर्गीकृत कीजिए :

  1. 4y – 7z
  2. y2
  3. x + y – xy
  4. 100
  5. ab – a – b
  6. 5 – 3t
  7. 4p2q – 4pq2
  8. 7mn
  9. z2 – 3z + 8
  10. a2 + b2
  11. z2 + z
  12. 1 + x + x2

हल:

  1. द्विपद
  2. एकपदी
  3. त्रिपद
  4. एकपदी
  5. त्रिपद
  6. द्विपद
  7. द्विपद
  8. एकपदी
  9. त्रिपद
  10. द्विपद
  11. द्विपद
  12. त्रिपद।

प्रश्न 6.
बताइए कि दिए हुए पदों के युग्म समान पदों के हैं या असमान पदों के हैं :

  1. 1,100
  2. -7x, \(\frac { 5 }{ 2 } \)x
  3. -29x, -29y
  4. 14xy, 42yx
  5. 4m2p, 4mp2
  6. 12xz, 12x2z2

हल:

  1. समान पद
  2. समान पद
  3. असमान पद
  4. समान पद
  5. असमान पद
  6. असमान पद

प्रश्न 7.
निम्नलिखित में समान पदों को छाँटिए :
(a) -xy2, -4yx2, , 8x2, 2xy2, 7y, – 11x2,-100x, – 11yx, 20x2y, -6x2,y, 2xy, 3x.
(b) 10pq, 7p, 8q, -p2q2, – 7qp, – 100q, – 23, 12q2p2, -5p2, 41, 2405p, 78qp, 13p2q, qp2, 701p2
हल:
(a) दिए हुए पदों में समान पदों के समूह:
-xy2, 2ry2; – 4yx2, 20x2y; 8x2, – 11x2; – 6x2; 7y, y; – 100x, 3x; -11yx, 2xy
(b) दिए हुए पदों में समान पदों के समूह –
10pq, – 7qp, 78qp; 7p, 2405p; 8q, – 100q; – p2q2, 12q2p2; – 23, 41; -5p2, 701p2, 13p2q, qp2

पाठ्य-पुस्तक पृष्ठ संख्या # 253

MP Board Solutions

प्रयास कीजिए

प्रश्न 1.
कम-से-कम ऐसी दो स्थितियों के बारे में सोचिए, जिनमें से प्रत्येक में आपको दो बीजीय व्यंजकों को बनाने की आवश्यकता पड़े और उन्हें जोड़ना या घटाना पड़े।
हल:

  • राहुल की मासिक आय दीपक की आय की तीन गुनी है और मीनाक्षी की मासिक आय राहुल और दीपक की प्रति माह आय के योग से ₹ 300 अधिक है। मीनाक्षी की प्रतिमाह आय क्या है?
  • दो हवाई जहाज विपरीत दिशाओं में उड़ना आरम्भ करते हैं। एक की औसत चाल, दूसरे की औसत चाल से 100 km/h अधिक है। यदि चार घण्टे बाद उनके बीच की दूरी 4000 km हो, तो उनकी औसत चाल ज्ञात कीजिए।

पाठ्य-पुस्तक पृष्ठ संख्या # 255

प्रयास कीजिए

प्रश्न 1.
जोड़िए और घटाइए:
(i) m – n, m + n
(ii) mn + 5 – 2, mn + 3
हल:
(i) योग : m – n + m + n
= m + m – n + n
= 2m + 0n = 2m
घटाना: (m – n) – (m + n)
= m – n – m – n
= m – m – n – n
= 0 – 2n = -2n

(ii) योग: mn + 5 – 2, mn +3
= mn + 5 – 2 + mn + 3
= mn + mn + 5 – 2 + 3
= 2mn + 6
घटाना: (mn + 5 – 2) – (mn + 3)
= mn + 5 – 2 – mn – 3
= mn – mn + 5 – 2 – 3
= 0 + 0 = 0

पाठ्य-पुस्तक पृष्ठ संख्या # 256

MP Board Class 7th Maths Solutions

MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.4

MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.4

प्रश्न 1.
एक बगीचा 90 m लम्बा और 75 m चौड़ा है। इसके बाहर चारों तरफ 5 m चौड़ा पथ बनाना है। पथ का क्षेत्रफल ज्ञात कीजिए। बगीचे का क्षेत्रफल हेक्टेअर में भी ज्ञात कीजिए।
हल:
बगीचे की लम्बाई (l) = 90 m, चौड़ाई (b) = 75 m
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.4 image 1
बगीचे का क्षेत्रफल = l × b
= 90 m × 75 m = 6750 m2
= \(\frac { 6750 }{ 10000 } \) हेक्टेअर
= 0.6750 हेक्टेअर
∵ बगीचे के चारों ओर का पथ आयत बनाता है।
∴ बाह्य आयत की लम्बाई = 90 + 5 + 5 = 100 m
व चौड़ाई = 75 + 5 + 5 = 85 m
∴ पथ सहित बगीचे का बाह्य आयत का क्षेत्रफल
= 100 × 85 = 8,500 m2
अतः पथ का क्षेत्रफल = बाह्य आयत का क्षेत्रफल – बगीचे का क्षेत्रफल
= 8500 m2 – 6750 m2 = 1750 m2

MP Board Solutions

प्रश्न 2.
125 m लम्बाई और 65m चौड़ाई वाले एक आयताकार पार्क के चारों ओर बाहर एक 3 m चौड़ा पथ बना हुआ है। पथ का क्षेत्रफल ज्ञात कीजिए।
हल:
चित्र 11.29 में,
PQ = AB + 2 × पथ की चौड़ाई
= 125 + 2 × 3 = 125 + 6 = 131 m
व QR = BC + 2 × पथ की चौड़ाई
= 65 + 2 × 3 = 65 + 6 = 71 m
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.4 image 2
अब, पथ का क्षेत्रफल
= बाह्य आयत PORS का क्षेत्रफल – पार्क ABCD का क्षेत्रफल
= PQ × QR – AB × BC
= 131 × 71 – 125 × 65
= 9301 – 8125 = 1176m2

प्रश्न 3.
8 cm लम्बे और 5 cm चौड़े एक गत्ते पर एक चित्र की पेंटिंग इस प्रकार बनाई गई है कि इसकी प्रत्येक भुजाओं के अनुदिश 1.5 cm चौड़ा हाशिया (margin) छोड़ा गया है। हाशिये का कुल क्षेत्रफल ज्ञात कीजिए।
हल:
चित्र 11.30 में,
PQ = 8 cm, QR = 5 cm
AB = PQ – 2 × हाशिये की चौड़ाई
= 8 – 2 × 1.5 = 8 – 3 = 5 cm
BC = QR – 2 × हाशिये की चौड़ाई
= 5 – 2 × 1.5 = 5 – 3 = 2 cm
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.4 image 3
अब, हाशिये का कुल क्षेत्रफल
= गत्ते का क्षेत्रफल – पेंटिंग का क्षेत्रफल
= PQ × QR – AB × BC = 8 × 5 – 5 × 2 = 40 – 10 = 30 cm2

प्रश्न 4.
5.5m लम्बे और 4 m चौड़े कमरे के चारों ओर बाहर 2-25 m चौड़ा एक बरामदा बनाया गया है। ज्ञात कीजिए:
(i) बरामदे का क्षेत्रफल
(ii) ₹ 200 प्रति m2 की दर से बरामदे के फर्श पर सीमेंट कराने का व्यय।
हल:
चित्र 11.31 में,
ABCD कमरा है तथा इसके चारों ओर 2.25 m चौड़ा बरामदा है।
PQ = AB + 2 × बरामदे की चौड़ाई
= 5.5 + 2 × 2.25 = 5.5 + 4.5 = 10 m
QR = BC + 2 × बरामदे की चौड़ाई
= 4 + 2 × 2.25
= 4 + 4.5 = 8.5 m
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.4 image 4
(i) बरामदे का क्षेत्रफल = बाह्य आयतकार भाग PQRS का क्षेत्रफल – कमरे का क्षेत्रफल
= PQ × QR – AB × CD
= 10 × 8.5 – 5.5 × 4
= 85 – 22 = 63 m2

(ii) ₹ 200 प्रति m2 की दर से बरामदे के फर्श पर सीमेंट कराने का कुल व्यय = ₹200 × 63 = ₹ 12,600

MP Board Solutions

प्रश्न 5.
30 m भुजा वाले एक वर्गाकार बगीचे की परिसीमा से लगा भीतर की ओर 1 m चौड़ा पथ बना हुआ है। ज्ञात कीजिए:
(i) पथ का क्षेत्रफल
(ii) ₹ 40 प्रति m2 की दर से शेष भाग पर घास लगवाने का व्यय।
हल:
(i) चित्र 11.32 में,
PQRS बगीचा है। इसके भीतर की ओर 1 m चौड़ा पथ है।
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.4 image 5
AB = PQ – 2 × पथ की चौड़ाई
= 30 – 2 × 1
= 30 – 2 = 28 m.

BC = OR – 2 × पथ की चौड़ाई
= 30 – 2 × 1
= 30 – 2 = 28m
अब, पथ का क्षेत्रफल = बाह्य वर्ग PQRS का क्षेत्रफल
– अन्त:वर्ग ABCD का क्षेत्रफल
= 30 × 30 – 28 × 28
= 900 – 784
= 116 m2

(ii) बगीचे के शेष भाग का क्षेत्रफल
= ABCD का क्षेत्रफल
= (28 × 28) m2
= 784 m2
∴ ₹ 40 प्रति m2 की दर से बगीचे के शेष भाग पर घास लगवाने का व्यय
= ₹40 × 784
= ₹ 31,360

MP Board Solutions

प्रश्न 6.
700 m लम्बे और 300 m चौड़े एक आयताकार पार्क के मध्य से होकर जाते 10 m चौड़े दो पथ बने हुए हैं, जो एक-दूसरे पर परस्पर लम्ब और चौपड़ के आकार के हैं। इनमें से प्रत्येक पथ का क्षेत्रफल ज्ञात कीजिए तथा पार्क की भुजाओं को छोड़कर पार्क के शेष भाग का भी क्षेत्रफल ज्ञात कीजिए। उत्तर को हेक्टेयर में दीजिए।
हल:
PQ = EH = KL = KN = 10 m
लम्बाई के अनुदिश सड़क की लम्बाई = 700 m
चौड़ाई के अनुदिश सड़क की लम्बाई = 300 m
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.4 image 6
सड़कों PQRS व EFGH का क्षेत्रफल
= PQRS का क्षेत्रफल + EFGH का क्षेत्रफल – KLMN का क्षेत्रफल
(300 × 10 + 700 × 10 – 10 × 10) m2
= (3000 + 7000 – 100) m2
= 10000 m2 – 100 m2 = 9900 m2
= \(\frac { 9900 }{ 10000 } \) = 0.99 हेक्टेयर
अब, सड़कों को छोड़कर पार्क का क्षेत्रफल
= पार्क का क्षेत्रफल – परस्पर लम्ब सड़कों का क्षेत्रफल
= 700 × 300 – 9900
= 210000 – 9900 = 200100 m2
= \(\frac { 200100 }{ 10000 } \) हेक्टेयर = 20.01 हेक्टेयर

प्रश्न 7.
90 m लम्बाई और 60 m चौड़ाई वाले एक आयताकार मैदान में दो पथ बनाए गए हैं, जो भुजाओं के समान्तर हैं, एक-दूसरे को लम्बवत् काटते हैं और मैदान के मध्य से होकर निकलते हैं। यदि प्रत्येक पथ की चौड़ाई 3m हो, तो ज्ञात कीजिए:
(i) पथों द्वारा आच्छादित क्षेत्रफल
(ii) ₹110 प्रति m2 की दर से पथ बनाने का व्यय।
हल:
(i) पथ PQRS का क्षेत्रफल = लम्बाई × चौड़ाई
= 90 × 3 = 270 m2
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.4 image 7
पथ TUVW का क्षेत्रफल = लम्बाई × चौड़ाई
= 60 × 3 = 180 m2
उभयनिष्ठ भाग EFGH का क्षेत्रफल
= 3 × 3 = 9 m2
अत: पथों का कुल क्षेत्रफल = पथ PQRS का क्षेत्रफल + पथ TUVW का क्षेत्रफल – उभयनिष्ठ भाग EFGH का क्षेत्रफल
= 270 m2 + 180 m2 – 9m2
= 450 m2 – 9 m2
= 441 m2

(ii) ₹ 110 प्रति m2 की दर से पथ बनाने का व्यय
= ₹ 110 × 441
= ₹ 48,510

MP Board Solutions

प्रश्न 8.
प्रज्ञा 4 cm त्रिज्या वाले एक वृत्ताकार पाइप के चारों ओर एक रस्सी लपेटती है (जैसा दिखाया गया है) और रस्सी की आवश्यक लम्बाई को काट लेती है। इसके बाद वह उसे 4 cm भुजा वाले एक वर्गाकार बॉक्स के चारों ओर लपेटती है(दिखाया गया है)। क्या उसके पास कुछ और रस्सी बचेगी ? (π = 3.14)
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.4 image 8
हल:
वृत्ताकार पाइप की त्रिज्या (r) = 4 cm
∴ पाइप की परिधि = 2πr
= 2 × 3.14 × 4 = 25.12 cm
∴ पाइप पर लपेटी गई रस्सी की लम्बाई
= 25.12 cm
अब, वर्ग का परिमाप = 4 × a
= 4 × 4 cm = 16 cm
∴ वर्ग पर लपेटी गई रस्सी की लम्बाई = 16 m
∵ 25.12 cm – 16 cm
∴ 25.12 cm – 16 cm = 9.12 cm.
हाँ, उसके पास 9-12 cm रस्सी और बचेगी।

प्रश्न 9.
संलग्न आकृति एक आयताकार पार्क के मध्य में एक वृत्ताकार फूलों की क्यारी को दर्शाती है। ज्ञात कीजिए:
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.4 image 9
(i) पूरे पार्क का क्षेत्रफल
(ii) फूलों की क्यारी का क्षेत्रफल
(iii) फूलों की क्यारी को छोड़कर, पार्क के शेष भाग का क्षेत्रफल
(iv) क्यारी की परिधि।
हल:
(i) यहाँ, पार्क की लम्बाई (l) = 10m, चौड़ाई = 5 m.
∴ पार्क का क्षेत्रफल = l × b
= 10 × 5 = 50 m2

(ii) फूलों की क्यारी की त्रिज्या (r) = 2 m
∴ फूलों की क्यारी का क्षेत्रफल = 2
= 3.14 × 2 × 2
= 12.56 m2

(iii) फूलों की क्यारी को छोड़कर शेष भाग का क्षेत्रफल
= पार्क का क्षेत्रफल – क्यारी का क्षेत्रफल
= 50 m2 – 12.56 m2
= 37.44 m2

(iv) क्यारी की परिधि = 2πr
= 2 × 3.14 × 2
= 12.56 m

MP Board Solutions

प्रश्न 10.
दी गई आकृति में छायांकित भाग का क्षेत्रफल ज्ञात कीजिए।
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.4 image 10
हल:
(i) आयत ABCD का क्षेत्रफल
= l × b = 18 × 10 = 180 cm2
∆ AEF का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × b × h
= \(\frac { 1 }{ 2 } \) × 10 × 6 = 30 cm2
∆ CBE का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × b × h
= \(\frac { 1 }{ 2 } \) × 8 × 10 = 40 cm2
∴ छायांकित भाग का क्षेत्रफल
= आयत ABCD का क्षेत्रफल
-(∆ AEF का क्षेत्रफल + ∆ CBE का क्षेत्रफल)
= 180 cm2 – (30 cm2 + 40 cm2)
= 180 cm2 – 70 cm = 110 cm2

(ii) वर्ग PQRS का क्षेत्रफल
= भुजा × भुजा
= 20 × 20 = 400 cm2
∆ PQT का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × b × h
\(\frac { 1 }{ 2 } \) × 20 × 10 = 100 cm2
∆ QRU का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × b × h
\(\frac { 1 }{ 2 } \) × 10 × 20 = 100 cm2
∆ TSU का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × b × h
= \(\frac { 1 }{ 2 } \) × 10 × 10 = 50 cm2
अब, छायांकित भाग का क्षेत्रफल = PQRS का क्षेत्रफल
– (∆ PQT का क्षेत्रफल + ∆ QRU का क्षेत्रफल + ∆ TSU का क्षेत्रफल)
= 400 cm2 – (100 cm2 + 100 cm2 + 50 cm2)
= 400 cm2 – 250 cm2 = 150 cm2

MP Board Solutions

प्रश्न 11.
चतुर्भुज ABCD का क्षेत्रफल ज्ञात कीजिए। यहाँ, AC = 22 cm, BM = 3 cm, DN = 3 cm, और BM ⊥ AC, DN ⊥ AC.
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.4 image 11
हल:
∆ ABC का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × b × h
\(\frac { 1 }{ 2 } \) × 22 × 3 = 33 cm2
∆ ACD का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × b × h
= \(\frac { 1 }{ 2 } \) × 22 × 3 = 33 cm2
∴ चतुर्भुज ABCD का क्षेत्रफल
= ∆ABC का क्षेत्रफल + ∆ACD का क्षेत्रफल
= 33 cm2 + 33 cm2 = 66 cm2

MP Board Class 7th Maths Solutions

MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.3

MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.3

प्रश्न 1.
निम्न त्रिज्याओं वाले वृत्तों की परिधि ज्ञात कीजिए (π = \(\frac { 22 }{ 7 } \) लीजिए):
(a) 14 cm
(b) 28 cm
(c) 21 cm
हल:
(a) यहाँ, त्रिज्या r = 14 cm
∴ वृत्त की परिधि = 2πr
= 2 × \(\frac { 22 }{ 7 } \) × 14 = 88 cm

(b) यहाँ, त्रिज्या r = 28 cm
∴ वृत्त की परिधि = 2πr
= 2 × \(\frac { 22 }{ 7 } \) × 28 = 176 cm

(c) यहाँ, त्रिज्या r = 21 mm
∴ वृत्त की परिधि = 2πr
= 2 × \(\frac { 22 }{ 7 } \) × 21 = 132 cm

MP Board Solutions

प्रश्न 2.
निम्न वृत्तों के क्षेत्रफल ज्ञात कीजिए :
(π = \(\frac { 22 }{ 7 } \) लीजिए)
(a) त्रिज्या = 14 mm
(b) व्यास = 49 m
(c) त्रिज्या = 5 cm
हल:
(a) यहाँ, त्रिज्या r = 14 mm.
∴ वृत्त का क्षेत्रफल = πr2
= \(\frac { 22 }{ 7 } \) × (14)2 = \(\frac { 22 }{ 7 } \) × 14 × 14
= 616 mm2

(b) यहाँ, व्यास = 49 m, ∴ त्रिज्या r = \(\frac { 49 }{ 2 } \) m
∴ वृत्त का क्षेत्रफल = πr2
= \(\frac { 22 }{ 7 } \) × (\(\frac { 49 }{ 2 } \))2 = \(\frac { 22 }{ 7 } \) × \(\frac { 49 }{ 2 } \) × \(\frac { 49 }{ 2 } \)
= \(\frac { 3773 }{ 2 } \) m2 = 1886.5 m2

(c) यहाँ, त्रिज्या r = 5 cm
∴ वृत्त का क्षेत्रफल = πr2
= \(\frac { 22 }{ 7 } \) × (5)2 = \(\frac { 22 }{ 7 } \) × 5 × 5
= \(\frac { 550 }{ 7 } \) cm2

प्रश्न 3.
यदि एक वृत्ताकार शीट की परिधि 154 मी हो, तो इसकी त्रिज्या ज्ञात कीजिए। शीट का क्षेत्रफल भी ज्ञात कीजिए
(π = \(\frac { 22 }{ 7 } \) लीजिए)।
हल:
यहाँ, वृत्त की परिधि = 154 m,
माना कि त्रिज्या = r m
∴ वृत्त की परिधि = 2πr = 154
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.3 image 1

MP Board Solutions

प्रश्न 4.
21 m व्यास वाले एक वृत्ताकार बगीचे के चारों ओर माली बाड़ लगाना चाहता है। खरीदे जाने वाले आवश्यक रस्से की लम्बाई ज्ञात कीजिए, यदि वह 2 पूरे चक्कर की बाड़ बनाना चाहता है। ₹ 4 प्रति मीटर की दर से रस्से पर व्यय ज्ञात कीजिए (π = \(\frac { 22 }{ 7 } \) लीजिए)।
हल:
वृत्ताकार बगीचे का व्यास = 21 m
∴ त्रिज्या (r) \(\frac { 21 }{ 2 } \) m
∴ वृत्ताकार बगीचे की परिधि = 2 × \(\frac { 22 }{ 7 } \) × \(\frac { 21 }{ 2 } \) = 66 m
चूँकि रस्सी बगीचे के चारों ओर 2 चक्कर लगाती है।
∴ रस्सी की लम्बाई = 2 × 66 m = 132 m
अतः रस्सी की अभीष्ट लम्बाई = 132 m
अब, ₹ 4 प्रति मीटर की दर से रस्सी पर व्यय
= ₹ 4 × 132
= ₹ 528

प्रश्न 5.
4 cm त्रिज्या वाली एक वृत्ताकार शीट में से 3cm त्रिज्या वाले एक वृत्त को निकाल दिया जाता है। शीट के शेष भाग का क्षेत्रफल ज्ञात कीजिए। (π = 3.14 लीजिए)।
हल:
वृत्ताकार शीट की त्रिज्या R = 4cm (बाहरी त्रिज्या)
शीट में से निकाले गये वृत्त की त्रिज्या r = 3 cm (भीतरी त्रिज्या)
∴ शेष शीट का क्षेत्रफल = बाहरी वृत्त का क्षेत्रफल – भीतरी वृत्त का क्षेत्रफल
= πR2 – πr2
= π (R2 – r2) = π (R + r) (R – r)
= 3.14 × (4 + 3) (4 – 3)
= 3.14 × 7 × 1 = 21.98 cm2

MP Board Solutions

प्रश्न 6.
साइमा 1.5 m व्यास वाले एक वृत्ताकार टेबल कवर के चारों ओर किनारी लगाना चाहती है। आवश्यक किनारी की लम्बाई ज्ञात कीजिए और ₹15 प्रति मीटर की दर से किनारी लगाने का व्यय ज्ञात कीजिए (π = 3.14 लीजिए)।
हल:
वृत्ताकार टेबल कवर का व्यास = 1.5 m
∴ त्रिज्या r = \(\frac { 1.5 }{ 2 } \) m
∴ परिधि = 2πr
= 2 × 3.14 × \(\frac { 1.5 }{ 2 } \) m = 4.71 m
अत: किनारी की अभीष्ट लम्बाई = 4.71 m
अब, ₹ 15 प्रति मीटर की दर से किनारी लगाने का व्यय
= ₹ 15 × 4.71 = ₹ 70.65

प्रश्न 7.
दी गई आकृति व्यास के साथ एक अर्द्धवृत्त है। इसका परिमाप ज्ञात कीजिए।
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.3 image 2
हल:
अर्द्धवृत्त का व्यास = 10 cm
∴ त्रिज्या r = \(\frac { 10 }{ 2 } \) = 5cm
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.3 image 3

MP Board Solutions

प्रश्न 8.
₹ 15 प्रति वर्ग मीटर की दर से 1.6m व्यास वाले एक वृत्ताकार टेबल के ऊपरी सतह पर पॉलिश कराने का व्यय ज्ञात कीजिए (π = 3.14 लीजिए)।
हल:
टेबल के ऊपरी सतह का व्यास = 1.6m
∴ त्रिज्या (r) = \(\frac { 1.6 }{ 2 } \) = 0.8m
टेबल के ऊपरी सतह का क्षेत्रफल
= πr2 = 3.14 × (0.8)2
= 3.14 × 0.8 × 0.8 m2
∵ पॉलिश की दर = ₹ 15/m2
∴ टेबल के ऊपरी सतह पर पॉलिश कराने का व्यय
= ₹15 × 3.14 × 0.8 × 0.8
= ₹30.144
अत: पॉलिश कराने का अभीष्ट व्यय
= ₹30.14(लगभग)

प्रश्न 9.
शाझली 44 cm लम्बाई वाला एक तार लेती है और उसे एक वृत्त के आकार में मोड़ देती है। उस वृत्त की त्रिज्या ज्ञात कीजिए। इसका क्षेत्रफल भी ज्ञात कीजिए। यदि इस तार को दुबारा एक वर्ग के आकार में मोड़ा जाता है, तो इसकी प्रत्येक भुजा की लम्बाई क्या होगी?
कौन-सी आकृति अधिक क्षेत्रफल घेरती है-वृत्त या वर्ग ?
(π = \(\frac { 22 }{ 7 } \) लीजिए)
हल:
यहाँ, तार की लम्बाई = 44 cm,
‘माना कि वृत्त की त्रिज्या = r
∵ तार द्वारा बने वृत्त की परिधि = 2πr
∴ 2πr = 44
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.3 image 4
अतः वृत्त की अभीष्ट त्रिज्या = 7 cm
अब, तार मोड़ने पर बने वृत्त का क्षेत्रफल
= πr2 = \(\frac { 22 }{ 7 } \) × (7)2 = 154 cm2
∵ तार को पुनः वर्ग में मोड़ा गया है
∴ इस प्रकार बने वर्ग का परिमाप = वृत्त की परिधि
या वर्ग का परिमाप = 44 cm
माना कि वर्ग की भुजा = a
∴ 4a = 44
या a = \(\frac { 44 }{ 4 } \) = 11 cm
अब, वर्ग का क्षेत्रफल = a2 = (11)2 = 121 cm2
∵ 154 cm2 > 121 cm2
अत: वृत्ताकार आकृति अधिक क्षेत्रफल घेरती है।

MP Board Solutions

प्रश्न 10.
14 cm त्रिज्या वाली एक वृत्ताकार गत्ते की शीट में से 3.5 cm त्रिज्या वाले दो वृत्तों को और 3 cm लम्बाई तथा 1 cm चौड़ाई वाले एक आयत को निकाल दिया जाता है (जैसा कि संलग्न आकृति में दिखाया गया है)। शीट के शेष भाग का क्षेत्रफल ज्ञात कीजिए
(π = \(\frac { 22 }{ 7 } \) लीजिए)।
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.3 image 5
हल:
∵ वृत्ताकार शीट की त्रिज्या = 14 cm
∴ शीट का क्षेत्रफल = πr2 = \(\frac { 22 }{ 7 } \) × (14)2
= \(\frac { 22 }{ 7 } \) × 14 × 14 = 616 cm2
छोटे वृत्त की त्रिज्या = 3.5 cm
∴ छोटे वृत्त का क्षेत्रफल = \(\frac { 22 }{ 7 } \) × 3.5 × 3.5 cm2
= 38.5 cm2
अत: दो छोटे वृत्तों का क्षेत्रफल
= 2 × 38.5 cm2 = 77 cm2
पुनः छोटे आयत की लम्बाई = 3 cm, चौड़ाई = 1 cm
∴ आयत का क्षेत्रफल = 3 × 1 = 3 cm2
∴ शीट से काटा गया कुल क्षेत्रफल
= 77 cm2 + 3 cm2 = 80 cm2
अतः, शीट के शेष भाग का क्षेत्रफल
= 616 cm2 – 80 cm2
= 536 cm2

प्रश्न 11.
6 cm भुजा वाले एक वर्गाकार ऐल्युमिनियम शीट के टुकड़े में से 2 cm त्रिज्या वाले एक वृत्त को काट दिया जाता है। शीट के शेष भाग का क्षेत्रफल ज्ञात कीजिए।
(π = 3.14 लीजिए)
हल:
वर्ग की भुजा = 6 cm
∴ वर्ग का क्षेत्रफल = a × a = 6 × 6 = 36 cm2
शीट में से काटे गये वृत्त की त्रिज्या = 2 cm
∴ वृत्त का क्षेत्रफल = πr2 = 3.14 × 2 × 2
= 12.56 cm2
शीट के शेष भाग का क्षेत्रफल = 36 cm2 – 12.56 cm2
= 23.44 cm2

प्रश्न 12.
एक वृत्त की परिधि 31.4.cm है। वृत्त की त्रिज्या और क्षेत्रफल ज्ञात कीजिए (π = 3.14 लीजिए)।
हल:
यहाँ, वृत्त की परिधि = 31.4 cm
माना कि वृत्त की त्रिज्या = r
∴ 2πr = 31.4
या 2 × 3.14 × r = 314
या r = \(\frac{31 \cdot 4}{2 \times 3 \cdot 14}\)
= 5 cm
अतः वृत्त की अभीष्ट त्रिज्या = 5 cm
अब, वृत्त का क्षेत्रफल = πr2
3.14 × 5 × 5
= 78.5 cm2

MP Board Solutions

प्रश्न 13.
एक वृत्ताकार फूलों की क्यारी के चारों ओर 4m चौड़ा पथ है तथा फूलों की क्यारी का व्यास 66 m है। इस पथ का क्षेत्रफल ज्ञात कीजिए (π = 3.14 लीजिए)।
हल:
यहाँ, फूलों की क्यारी का व्यास = 66 m
∴ त्रिज्या (r) = \(\frac { 66 }{ 2 } \) = 33 m
∵ चारों ओर मार्ग की चौड़ाई = 4 m
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.3 image 6
∴ बाहरी वृत्त की त्रिज्या (R) = 33 m + 4 m
= 37 m
∴ शेष भाग का क्षेत्रफल = πR2 – πr2
= π (R2 – r2)
= 3.14 × (372 – 332)
= 3.14 × (37 + 33) (37 – 33)
= 3.14 × 70 × 4 = 879.2 m2
अतः पथ का अभीष्ट क्षेत्रफल = 879.2 m2

प्रश्न 14.
एक वृत्ताकार फूलों के बगीचे का क्षेत्रफल 314 m2 है। बगीचे के केन्द्र में एक घूमने वाला फव्वारा (Sprinkler) लगाया जाता है जो अपने चारों ओर 12 m त्रिज्या के क्षेत्रफल में पानी का छिड़काव करता है। क्या फव्वारा पूरे बगीचे में पानी का छिड़काव कर सकेगा ? (π = 3.14 लीजिए)
हल:
वृत्ताकार बगीचे का क्षेत्रफल = 314 m2
माना कि बगीचे की त्रिज्या = r m
∴ बगीचे का क्षेत्रफल = πr2 = 314
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.3 image 7
अब फव्वारे द्वारा घिरे क्षेत्र की त्रिज्या = 12 m
∵ 12 m > 10 m
हाँ, फव्वारा पूरे बगीचे में पानी का छिड़काव कर सकेगा।

प्रश्न 15.
आकृति में अन्तः और बाह्य वृत्तों की परिधि ज्ञात कीजिए (π = 3.14 लीजिए)
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.3 image 8
हल:
यहाँ, बाह्य वृत्त की त्रिज्या (R) = 19 m
∴ बाह्य वृत्त की परिधि = 2πR
= 2 × 3.14 × 19 m
= 119.32 m
अन्त: वृत्त की त्रिज्या (r) = 19m – 10 m = 9m
∴ अन्तः वृत्त की परिधि = 2πr
= 2 × 3.14 × 9
= 56.52 m

प्रश्न 16.
28 cm त्रिज्या वाले एक पहिए को 352 m दूरी · तय करने के लिए कितनी बार घुमाना पड़ेगा?
(π = \(\frac { 22 }{ 7 } \) लीजिए)
हल:
पहिए की त्रिज्या (r) = 28 cm
∴ पहिए की परिधि = 2πr
= 2 × \(\frac { 22 }{ 7 } \) × 28 cm = 176 cm
∵ पहिए द्वारा 1 चक्कर में तय की गई दूरी = 176 cm
∵ पहिए द्वारा तय कुल दूरी = 352 m = 35,200 cm
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.3 image 9
अतः पहिया 352 m की दूरी 200 चक्करों में तय करेगा।

MP Board Solutions

प्रश्न 17.
एक वृत्ताकार घड़ी की मिनट की सुई की लम्बाई 15 cm है। मिनट की सुई की नोंक 1 घण्टे में कितनी दूरी तय करेगी। (π = 3.14 लीजिए)
हल:
∵ मिनट की सुई की लम्बाई = 15 cm
∴ मिनट की सुई की नोंक द्वारा बनाए गए वृत्त की त्रिज्या
(r) = 15 cm
इस प्रकार, बने वृत्त की परिधि
= 2πr = 2 × 3.14 × 15 = 94.2 cm
∵ मिनट की सुई 1 घण्टे में 1 चक्कर लगाती है।
अत: मिनट की सुई की नोंक द्वारा 1 घण्टे में चली गई अभीष्ट दूरी = 94.2 cm

पाठ्य-पुस्तक पृष्ठ संख्या # 241

इन्हें कीजिए

प्रश्न 1.
निम्न को बदलिए :
(i) 50 cm2 को mm2 में
(ii) 2 ha को m2 में
(iii) 10 m2 को cm2 में
(iv) 1000 cm2 को mm2 में
हल:
(i) ∵ 1 cm2 = (10 × 10) mm2 = 100 mm2
∴ 50 cm = (50 × 100) mm2
= 5000 mm2

(ii) ∵ 1 हेक्टेअर = (100 × 100) m2 = 10000 m2
∴ 2 हेक्टेअर = 2 × 10000 = 20000 m2

(iii) ∵ 1m2 = (100 × 100) cm2
= 10000 cm2
∴ 10 m2 = 10 × 10000 = 100000 cm2

(iv) ∵ 1 cm2 = (10 × 10) mm2 = 100 mm2
∴ 1000 cm2 = 1000 × 100 = 100000 mm2

पाठ्य-पुस्तक पृष्ठ संख्या # 243-244

MP Board Class 7th Maths Solutions

MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.2

MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.2

प्रश्न 1.
निम्न में प्रत्येक समान्तर चतुर्भुज का क्षेत्रफल ज्ञात कीजिए:
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.2 image 1
हल:
(a) यहाँ, आधार (b) = 7 cm, ऊँचाई (h) = 4 cm
∴ समान्तर चतुर्भुज का क्षेत्रफल = b × h
= (7 × 4) cm2 = 28 cm

(b) यहाँ, आधार (b) = 5 cm, ऊँचाई (h) = 3 cm.
∴ समान्तर चतुर्भुज का क्षेत्रफल
= b × h = (5 × 3) cm2 = 15 cm2

(c) यहाँ, आधार (b) = 2.5 cm, ऊँचाई (h) = 3.5 cm
∴ समान्तर चतुर्भुज का क्षेत्रफल = b × h
= (2.5 × 3.5) cm2 = 8.75 cm2

(d) यहाँ, आधार (b) = 5 cm, ऊँचाई (h) = 4.8 cm
∴ समान्तर चतुर्भुज का क्षेत्रफल = b × h
= (5 × 4.8) cm2 = 24 cm2

(e) यहाँ, आधार (b) = 2 cm, ऊँचाई (h) = 4.4 cm
∴ समान्तर चतुर्भुज का क्षेत्रफल = b × h
= (2 × 4.4) cm2 = 8.8 cm2

MP Board Solutions

प्रश्न 2.
निम्न में से प्रत्येक त्रिभुज का क्षेत्रफल ज्ञात कीजिए :
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.2 image 2
हल:
(a) यहाँ, आधार (b) = 4 cm, ऊँचाई (h) = 3 cm
∴ त्रिभुज का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × b × h
= (\(\frac { 1 }{ 2 } \) × 4 × 3) cm2
= 6 cm2

(b) यहाँ, आधार (b) = 5 cm, ऊँचाई (h) = 3.2 cm
∴ त्रिभुज का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × b × h
= (\(\frac { 1 }{ 2 } \) × 5 × 32) cm2
= 8 cm2

(c) यहाँ, आधार (b) = 3 cm, ऊँचाई (h) = 4 cm
∴ त्रिभुज का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × b × h
= (\(\frac { 1 }{ 2 } \) × 3 × 4 ) cm2
= 6 cm2

(d) यहाँ, आधार (b) = 3 cm, ऊँचाई (h) = 2 cm
∴ त्रिभुज का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × b × h
= ( \(\frac { 1 }{ 2 } \) × 3 × 2) cm2
= 3 cm2

प्रश्न 3.
रिक्त स्थानों का मान ज्ञात कीजिए।
हल:
चूँकि हम जानते हैं कि समान्तर चतुर्भुज का क्षेत्रफल
= आधार × ऊँचाई
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.2 image 3

प्रश्न 4.
रिक्त स्थानों का मान ज्ञात कीजिए :
हल:
चूँकि हम जानते हैं कि
त्रिभुज का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × आधार × ऊँचाई
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.2 image 4

MP Board Solutions

प्रश्न 5.
PQRS एक समान्तर चतुर्भुज है (संलग्न चित्र 11.17)| QM शीर्ष Q से SR तक की ऊँचाई तथा QN शीर्ष Q से PS तक की ऊँचाई है। यदि SR = 12 cm और QM = 7.6 cm, तो ज्ञात कीजिए :
(a) समान्तर चतुर्भुज PQRS का क्षेत्रफल
(b) ON यदि, PS = 8 cm
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.2 image 5
हल:
(a) यहाँ, आधार SR = 12 cm,
संगत ऊँचाई QM = 7.6 cm
समान्तर चतुर्भुज PQRS का क्षेत्रफल = b × h
= SR × QM
= (12 × 7.6) cm2
= 91.2 cm2

(b) अब, समान्तर चतुर्भुज का क्षेत्रफल
= 91.2 cm2, आधार (PS) = 8 cm
माना कि संगत ऊँचाई (QN) = h cm
b × h = 91.2
या 8 × h = 91.2
या h = \(\frac { 91.2 }{ 8 } \) = 11.4 cm
∴ QN = 11.4 cm

प्रश्न 6.
DL और BM समान्तर चतुर्भुज ABCD की क्रमशः भुजाएँ AB और AD पर लम्ब हैं(संलग्न चित्र 11.18)। यदि समान्तर चतुर्भुज का क्षेत्रफल 1470 cm2 है, AB = 35 cm, और AD = 49 cm है, तो BM तथा DL की लम्बाई ज्ञात कीजिए।
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.2 image 6
हल:
यहाँ, समान्तर चतुर्भुज ABCD का क्षेत्रफल
= 1470 cm2
आधार AB = 35 cm,
∵ समान्तर चतुर्भुज ABCD का क्षेत्रफल
= आधार × ऊँचाई = AB × DL
∴ 35 × DL = 1470
या DL = \(\frac { 1470 }{ 35 } \) = 42 cm
पुनः समान्तर चतुर्भुज का क्षेत्रफल = आधार × ऊँचाई
= AD × BM
∴ 49 × BM = 1470
या BM = \(\frac { 1470 }{ 49 } \) = 30 cm

MP Board Solutions

प्रश्न 7.
त्रिभुज ABC, A पर समकोण है (संलग्न चित्र 11.19),और AD भुजा BC पर लम्ब है। यदि AB = 5cm, BC = 13 cm और AC = 12 cm है, तो ∆ABC का क्षेत्रफल ज्ञात कीजिए। AD की लम्बाई भी ज्ञात कीजिए।
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.2 image 7
हल:
यहाँ, AB = 5 cm, BC = 13 cm, AC = 12 cm
∆ ABC का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × आधार × ऊँचाई
= \(\frac { 1 }{ 2 } \) AB × AC
= \(\frac { 1 }{ 2 } \) × 5 × 12 cm2
= 30 cm2
पुन: ∆ ABC का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × आधार × ऊँचाई
= \(\frac { 1 }{ 2 } \) BC × AD
∴ 30 = \(\frac { 1 }{ 2 } \) × 13 × AD
या AD = \(\frac{30 \times 2}{13}=\frac{60}{13}\) cm

प्रश्न 8.
∆ ABC समद्विबाहु त्रिभुज है, जिसमें AB = AC = 7.5 cm और BC = 9 cm है (संलग्न चित्र 11.20)। 4 से BC तक की ऊँचाई AD, 6 cm है। ∆ ABC का क्षेत्रफल ज्ञात कीजिए। C से AB तक की ऊँचाई, अर्थात् CE क्या होगी?
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.2 image 8
हल:
यहाँ, आधार BC = 9 cm,
संगत ऊँचाई AD = 6 cm
∴ ∆ ABC का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × आधार × ऊँचाई
= \(\frac { 1 }{ 2 } \) × BC × AD
= \(\frac { 1 }{ 2 } \) × 9 × 6 cm2
= 27 cm2
पुन: ∆ ABC का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × AB × CE
= 27 cm2
या \(\frac { 1 }{ 2 } \) × 7.5 × CE = 27
या CE = \(\frac{27 \times 2}{7 \cdot 5}\) = 7.2 cm

पाठ्य-पुस्तक पृष्ठ संख्या # 236

इन्हें कीजिए

प्रश्न 1.
संलग्न चित्र 11.21 में
(a) किस वर्ग का परिमाप अधिक है ?
(b) कौन-सा अधिक है; छोटे वर्ग का परिमाप या वृत्त की परिधि?
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.2 image 9
हल:
(a) बाहरी वर्ग का परिमाप अधिक है।
(b) छोटे वर्ग के परिमाप से वृत्त की परिधि अधिक है।

प्रयास कीजिए

प्रश्न 1.
एक चौथाई प्लेट तथा एक अर्द्ध प्लेट लीजिए। प्रत्येक को टेबल की ऊपरी सतह पर एक बार घुमाइए। कौन-सी प्लेट एक पूरे चक्कर में अधिक दूरी तय करती है? कौन-सी प्लेट कम चक्कर में टेबल की ऊपरी सतह की लम्बाई को पूरा करेगी?
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.2 image 10
हल:
एक पूरे चक्कर में अर्द्ध प्लेट अधिक दूरी तय करेगी। एक चौथाई प्लेट की अपेक्षा अर्द्ध प्लेट कम चक्कर में टेबल की ऊपरी सतह की लम्बाई को पूरा करेगी।

MP Board Solutions

पाठ्य-पुस्तक पृष्ठ संख्या # 237

निम्न पर विचार कीजिए

एक किसान खेत के केन्द्र पर 7 m त्रिज्या वाली एक फूलों की क्यारी खोदता है। उसे खाद को खरीदने की आवश्यकता है। यदि 1 m2 क्षेत्रफल के लिए 1 kg खाद की आवश्यकता हो, तो उसे कितने किलोग्राम खाद खरीदनी चाहिए?
हल:
यहाँ, फूलों की क्यारी की त्रिज्या r = 7 m
∵ क्यारी का क्षेत्रफल = πr2
∴ क्यारी का क्षेत्रफल = \(\frac { 22 }{ 7 } \) × 7 × 7 = 154 m2
∵ 1 वर्ग मीटर के लिए खाद चाहिए = 1 kg
∴ 154 वर्ग मीटर के लिए खाद चाहिए = 1 × 154
= 154 kg
अत: उसे 154 किलोग्राम खाद खरीदनी चाहिए।

पाठ्य-पुस्तक पृष्ठ संख्या # 238

प्रश्न 1.
₹10 प्रति m2 की दर से, 2 m त्रिज्या वाले एक वृत्ताकार टेबल के ऊपरी सतह पर पॉलिश कराने का व्यय क्या होगा?
हल:
यहाँ, टेबल की त्रिज्या r = 2 m
वृत्ताकार टेबल की ऊपरी सतह का क्षेत्रफल = πr2
= \(\frac { 22 }{ 7 } \) × 2 × 2 = \(\frac { 88 }{ 7 } \) m2
अत: ₹ 10 प्रति m2 की दर से ऊपरी सतह पर पॉलिश कराने का व्यय
= ₹ 10 × \(\frac { 88 }{ 7 } \) = ₹ \(\frac { 880 }{ 7 } \)
= ₹ 125.71 (लगभग)

MP Board Solutions

पाठ्य-पुस्तक पृष्ठ संख्या # 239-240

इन्हें कीजिए

प्रश्न 1.
ग्राफ पेपर पर अलग-अलग त्रिज्याओं के वृत्तों को बनाइए। वर्गों की संख्या को गिनकर क्षेत्रफल ज्ञात कीजिए। सूत्र का प्रयोग करके भी क्षेत्रफल ज्ञात कीजिए। दोनों उत्तरों की तुलना कीजिए।
हल:
1 वर्ग सेमी के ग्राफ पर 2 सेमी तथा 3 सेमी त्रिज्या के दो वृत्त खींचे।
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.2 image 11
दोनों वृत्तों के पूर्ण वर्ग को गिनने पर हमें क्रमश: 12 सेमी तथा 28 सेमी2 क्षेत्रफल प्राप्त होता है।
सूत्र का प्रयोग करने पर हमें उनका क्रमशः निम्न क्षेत्रफल प्राप्त होता है।
2 सेमी त्रिज्या वाले वृत्त का क्षेत्रफल = πr2
= \(\frac { 22 }{ 7 } \) × (2)2
= \(\frac { 22 }{ 7 } \) × 4 = \(\frac { 88 }{ 7 } \) सेमी2 = 12.57 सेमी2
3 सेमी त्रिज्या वाले वृत्त का क्षेत्रफल = πr2
= \(\frac { 22 }{ 7 } \) × (3)2 = \(\frac { 22 }{ 7 } \) × 9
= \(\frac { 198 }{ 7 } \) सेमी2 = 28.28 सेमी2
यहाँ हम देखते हैं कि दोनों क्षेत्रफलों के मान भिन्न-भिन्न प्राप्त होते हैं। हालांकि यह अन्तर बहुत कम है।

MP Board Class 7th Maths Solutions

MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1

MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1

प्रश्न 1.
एक आयताकार भूखण्ड की लम्बाई और चौड़ाई क्रमशः 500 m तथा 300 m है। ज्ञात कीजिए :
(i) भूखण्ड का क्षेत्रफल
(ii) भूखण्ड का मूल्य, यदि 1 m2 का मूल्य ₹ 10,000
हल:
(i) भूखण्ड की लम्बाई, l = 500 m,
चौड़ाई b = 300 m
भूखण्ड का क्षेत्रफल = l × b
= 500 m × 300 m = 1,50,000 m2

(ii) भूखण्ड के 1 m2 का मूल्य = ₹10,000
∴ भूखण्ड के 1,50,000 m2 का मूल्य
= ₹ 10,000 × 1,50,000
= ₹ 1,50,00,00,000

MP Board Solutions

प्रश्न 2.
एक वर्गाकार पार्क का क्षेत्रफल ज्ञात कीजिए जिसका परिमाप 320 m है।
हल:
∵ वर्गाकार पार्क का परिमाप = 320 m
अर्थात् 4 × भुजा = 320 m
भुजा = \(\frac { 320 }{ 4 } \)m = 80m
वर्गाकार पार्क का क्षेत्रफल = (भुजा)2
= 80 m × 80 m
= 6,400 m2

प्रश्न 3.
एक आयताकार भूखण्ड की चौड़ाई ज्ञात कीजिए यदि इसका क्षेत्रफल 440 m- और लम्बाई 22 m हो। इसका परिमाप भी ज्ञात कीजिए।
हल:
आयताकार भूखण्ड की लम्बाई = 22 m
माना कि भूखण्ड की चौड़ाई = b
∴ भूखण्ड का क्षेत्रफल = l × b = 22 × b
या 22 × b = 440
या b = \(\frac { 440 }{ 22 } \) = 20 m
अतः भूखण्ड की चौड़ाई = 20 m
परिमाप = 2(l + b)
= 2 × (22 + 20)
= 2 × 42 = 84 m

प्रश्न 4.
एक आयताकार शीट का परिमाप 100 cm है। यदि लम्बाई 35 cm हो, तो इसकी चौड़ाई ज्ञात कीजिए। क्षेत्रफल भी ज्ञात कीजिए।
हल:
आयताकार शीट का परिमाप = 100 cm, लम्बाई = 35 cm, चौड़ाई b = ?
∴ 2(l + b) = 100 cm
या 2(35 + b) = 100 cm
या 35 + b = \(\frac { 100 }{ 2 } \) = 50 cm
b = 50 – 35 = 15 cm
∴ शीट की चौड़ाई = 15 cm
अब, क्षेत्रफल = l × b
∴ शीट का क्षेत्रफल = 35 × 15 = 525 cm2

प्रश्न 5.
एक वर्गाकार पार्क का क्षेत्रफल एक आयताकार पार्क के बराबर है। यदि वर्गाकार पार्क की एक भुजा 60 m हो और आयताकार पार्क की लम्बाई 90 m हो, तो आयताकार पार्क की चौड़ाई ज्ञात कीजिए।
हल:
वर्गाकार पार्क की भुजा = 60 m
आयताकार पार्क की लम्बाई = 90 m
∴ वर्गाकार पार्क का क्षेत्रफल = a2 = 60 m × 60 m
= 3,600 m2
∵ आयताकार पार्क का क्षेत्रफल = वर्गाकार पार्क का क्षेत्रफल
∴ लम्बाई × चौड़ाई = 3,600 m2
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 1

MP Board Solutions

प्रश्न 6.
एक तार आयत के आकार का है। इसकी लम्बाई 40 cm और चौड़ाई 22 cm है। यदि उसी तार को दुबारा मोड़कर एक वर्ग बनाया जाता है, तो प्रत्येक भुजा की माप क्या होगी? यह भी ज्ञात कीजिए कि किस आकार का क्षेत्रफल अधिक होगा?
हल:
लम्बाई l = 40 cm, चौड़ाई b = 22 m
परिमाप = 2(l + b)
= 2(40 + 22)
= 2 × 62 = 124cm
आयत का क्षेत्रफल = l × b
= 40 × 22
= 880 cm2
∵ तार को मोड़कर वर्ग बनाया गया है।
∴ वर्ग का परिमाप – आयत का परिमाप
4 × a= 124 cm
या वर्ग की प्रत्येक भुजा की लम्बाई a = \(\frac { 124 }{ 4 } \) = 31 cm
वर्ग का क्षेत्रफल = (a)2
= 31 × 31
= 961 cm2
∵ 961 cm2 > 880 cm2
∴ वर्ग का क्षेत्रफल आयत के क्षेत्रफल से अधिक है।

प्रश्न 7.
एक आयत का परिमाप 130 cm है। यदि आयत की चौड़ाई 30 cm हो, तो आयत की लाबाई ज्ञात कीजिए। आयत का क्षेत्रफल भी ज्ञात कीजिए।
हल:
आयत का परिमाप = 130 cm
आयत की चौड़ाई = 30 cm
∵ आयत का परिमाप = 2 × (l + b)
∴ 2(l + 30) = 130 cm
या l + 30 = \(\frac { 130 }{ 2 } \) = 65 cm
या आयत की लम्बाई l = 65 – 30 = 35 cm
∴ आयत का क्षेत्रफल = l × b
= 35 × 30 cm2
= 1,050 cm2

प्रश्न 8.
2 m लम्बाई और 1 m चौड़ाई वाले दरवाजे को एक दीवार में लगाया जाता है। दीवार की लम्बाई 4.50 m तथा चौड़ाई 3.6m है (चित्र 11.5)।₹ 20 प्रति m’ की दर से दीवार पर सफेदी (white wash) कराने का व्यय ज्ञात कीजिए।
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 2
हल:
दरवाजे की लम्बाई = 2 m, चौड़ाई = 1 m, दीवार की लम्बाई = 4.50 m, चौड़ाई = 3.6 m.
∴ दीवार का क्षेत्रफल = l × b
= 4.50 m × 3.6m
= 16.2 m2
दरवाजे का क्षेत्रफल = 2 m × 1 m = 2 m2
दीवार पर सफेदी वाला क्षेत्रफल
= दीवार का क्षेत्रफल – दरवाजे का क्षेत्रफल
= 16.2 m2 – 2 m2 = 14.2 m2
∴ सफेदी कराने का व्यय = ₹ 14.2 × 20
= ₹ 284

प्रश्न:
08 cm और 5 cm भुजाओं वाला एक आयत लीजिए। आयत को विकर्ण के अनुदिश ऐसा काटिए जिससे दो त्रिभुज प्राप्त हों (चित्र 11.6)।
एक त्रिभुज को दूसरे पर रखिए।
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 3

प्रश्न 1.
क्या ये दोनों पूर्णतया समान माप के हैं ?
उत्तर:
हाँ, ये दोनों पूर्णतया समान माप के हैं।

प्रश्न 2.
क्या आप कह सकते हैं कि दोनों त्रिभुजों का क्षेत्रफल बराबर है ?
उत्तर:
हाँ, दोनों त्रिभुजों का क्षेत्रफल बराबर है।

प्रश्न 3.
क्या ये त्रिभुज सर्वांगसम भी हैं ?
उत्तर:
हाँ, ये त्रिभुज सर्वांगसमता के SSS गुण के अनुसार सर्वांगसम है।

प्रश्न 4.
इनमें से प्रत्येक त्रिभुज का क्षेत्रफल कितना है ?
हल:
प्रत्येक त्रिभुज का क्षेत्रफल
= \(\frac { 1 }{ 2 } \) × आयत का क्षेत्रफल
= \(\frac { 1 }{ 2 } \) × (l × b) = \(\frac { 1 }{ 2 } \) × 8 × 5 = 20 cm2
इनमें से प्रत्येक त्रिभुज का क्षेत्रफल 20 cm2 है।

MP Board Solutions

प्रश्न:
अब एक 5 cm भुजा वाला वर्ग लीजिए और इसे 4 त्रिभुजों में बाँटिए जैसा कि आकृति में दिखाया गया है (चित्र 11.7)।
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 4

प्रश्न 1.
क्या चारों त्रिभुजों का क्षेत्रफल बराबर है ?
उत्तर:
हाँ, चारों त्रिभुजों का क्षेत्रफल बराबर है।

प्रश्न 2.
क्या वे एक-दूसरे के सर्वांगसम हैं ?
उत्तर:
हाँ, वे एक-दूसरे के सर्वांगसम हैं।

प्रश्न 3.
प्रत्येक त्रिभुज का क्षेत्रफल क्या है ?
हल:
प्रत्येक त्रिभुज का क्षेत्रफल = \(\frac { 1 }{ 4 } \) × वर्ग का क्षेत्रफल
= \(\frac { 1 }{ 4 } \) × 5 × 5
= \(\frac { 25 }{ 4 } \) = 6.25 cm2

पाठ्य-पुस्तक पृष्ठ संख्या # 226

MP Board Solutions

इन्हें कीजिए

प्रश्न 1.
आगे दिए गए सभी आयत जिसकी लम्बाई 6.cm और चौड़ाई 4 cm है, सर्वांगसम बहुभुज से मिलकर बने हैं। प्रत्येक बहुभुज का क्षेत्रफल ज्ञात कीजिए।
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 5
हल:
आयत की लम्बाई = 6 cm, चौड़ाई = 4 cm,
आयत सर्वांगसम बहुभुज बनाते हैं।
प्रत्येक दशा में बहुभुज का क्षेत्रफल
= आयत का क्षेत्रफल
= l × b = 6 × 4 = 24 cm2

(i) चूँकि आकृति में कुल छ: बहुभुज हैं।
∴ प्रत्येक बहुभुज का क्षेत्रफल = \(\frac { 24 }{ 6 } \) = 4 cm2

(ii) ∵ आकृति में कुल 4 बहुभुज हैं।
∴ प्रत्येक आकृति का क्षेत्रफल = \(\frac { 24 }{ 6 } \) = 6 cm2

(iii) ∵ आकृति में 2 बहुभुज हैं।
∴ प्रत्येक आकृति का क्षेत्रफल
= \(\frac { 24 }{ 2 } \) = 12 cm2

(iv) ∵ आकृति में कुल 2 बहुभुज हैं।
∴ प्रत्येक आकृति का क्षेत्रफल
= \(\frac { 24 }{ 2 } \) = 12 cm2

(v) ∵ आकृति में कुल 8 बहुभुज हैं।
∴ प्रत्येक आकृति का क्षेत्रफल
= \(\frac { 24 }{ 8 } \) = 3 cm2

पाठ्य-पुस्तक पृष्ठ संख्या # 227-228

पाठ्या-पुस्तक में दिये गये समान्तर चतुर्भुजों के बारे में सोचिए।
आकृतियों द्वारा घेरे गए वर्गों की संख्या को गिनकर समान्तर चतुर्भुज का क्षेत्रफल ज्ञात कीजिए और भुजाओं को मापकर परिमाप भी ज्ञात कीजिए।
तालिका को पूरा कीजिए।
हल:
समान्तर चतुर्भुज की प्रत्येक आकृति में वर्गों की संख्या 15 है। इसलिए प्रत्येक समान्तर चतुर्भुज का क्षेत्रफल
= 15 वर्ग इकाई
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 6

परिमाप निकालने के लिए प्रत्येक समान्तर चतुर्भुज की भुजा AD को नापते हैं।
आकृति : (a) AD = 3.2 इकाई,
∴ परिमाप = 2(l + b) = 2(5 + 3.2) = 16.4 इकाई
(b) AD = 3.6 इकाई,
∴ परिमाप = 2(5 + 3.6) = 17.2 इकाई
(c) AD = 4.2 इकाई,
∴ परिमाप = 2(5 + 4.2) = 18.4 इकाई
(d) AD = 3.2 इकाई,
∴ परिमाप = 2(5 + 3.2) = 16.4 इकाई
(e) AD = 3.6 इकाई,
∴ परिमाप = 2(5 + 3.6)
= 17.2 इकाई
(f) AD = 4.2 इकाई,
∴ परिमाप = 2(5 + 4.2) = 18.4 इकाई
(g) AD =5 इकाई,
∴ परिमाप = 2(5 + 5) = 20 इकाई

तालिका
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 7
इकाई स्पष्ट है कि क्षेत्रफल सभी चतुर्भुजों का समान है, लेकिन परिमाप भिन्न हैं।

पाठ्य-पुस्तक पृष्ठ संख्या # 228

MP Board Solutions

प्रश्न:
पाठ्य-पुस्तक में दिये गये 7 cm तथा 5 cm भुजाओं वाले समान्तर चतुर्भुजों को देखिए।
प्रत्येक समान्तर चतुर्भुज का परिमाप तथा क्षेत्रफल ज्ञात कीजिए। अपने परिणाम का विश्लेषण कीजिए।
हल:
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 8
यहाँ, स्पष्ट है कि समान्तर चतुर्भुजों का क्षेत्रफल अलग-अलग है, लेकिन परिमाप समान हैं।

पाठ्य-पुस्तक पृष्ठ संख्या # 229

इन्हें कीजिए

प्रश्न 1.
निम्न समान्तर चतुर्भुजों के क्षेत्रफल ज्ञात कीजिए:
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 9
(iii) समान्तर चतुर्भुज ABCD में AB = 7.2 cm और C से AB पर लम्ब 4.5 cm है।
हल:
(i) आधार = 8 cm, ऊँचाई = 3.5 cm
∴ क्षेत्रफल = आधार × ऊँचाई
= 8 cm × 3.5 cm = 28 cm2

(ii) आधार = 8 cm, ऊँचाई = 2.5 cm
∴ क्षेत्रफल = आधार × ऊँचाई
=8 cm × 2.5 cm = 20 cm2

(iii) समान्तर चतुर्भुज का आधार AB = 7.2 cm
ऊँचाई = 4.5cm
क्षेत्रफल = आधार × ऊँचाई
= 7.2 cm × 4.5 cm
= 32.40 cm2

पाठ्य-पुस्तक पृष्ठ संख्या # 230

इन्हें कीजिए

प्रश्न 1.
ऊपर दिए गए क्रियाकलापों को अलग-अलग प्रकार के त्रिभुज लेकर कीजिए।
हल:
दिया है, ∆ABC हम दूसरा ∆ACD इस प्रकार लेते हैं कि समान्तर चतुर्भुज ABCD दिखाई दे, जैसा कि चित्र 11:11 में दिखाया गया है :
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 10
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 11

ऊपर की प्रत्येक आकृति में, ∆ABC के क्षेत्रफल का दो गुना समान्तर चतुर्भुज ABCD के क्षेत्रफल के बराबर है।
क्योंकि हम जानते हैं कि ∆ABC का क्षेत्रफल
= \(\frac { 1 }{ 2 } \) (आधार × ऊँचाई)
तथा समान्तर चतुर्भुज का क्षेत्रफल
= आधार × ऊँचाई होता है।

प्रश्न 2.
अलग-अलग प्रकार के समान्तर चतुर्भुज लीजिए। प्रत्येक समान्तर चतुर्भुज को दो त्रिभुजों में एक विकर्ण के अनुदिश काटिए। क्या ये त्रिभुज सर्वांगसम हैं ?
हल:
दिया है, ABCD एक समान्तर चतुर्भुज है। प्रत्येक चतुर्भुज दो त्रिभुजों में विकर्ण AC अथवा BD के अनुदिश काटा, जैसा कि चित्र 11.12 में दिखाया गया है। ये त्रिभुज आपस में सर्वांगसम होंगे।
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 12

प्रश्न 3.
चित्र 11.13 में सभी त्रिभुज, आधार AB = 6 cm पर स्थित हैं। आधार AB पर प्रत्येक त्रिभुज की संगत ऊँचाई के बारे में आप क्या कह सकते हैं ?
क्या हम कह सकते हैं कि सभी त्रिभुजों का क्षेत्रफल बराबर है?
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 13

हल:
चित्र से स्पष्ट है कि प्रत्येक त्रिभुज की संगत ऊँचाई आधार AB पर बराबर है।
∵ त्रिभुज का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × आधार × ऊँचाई
अतः हम कह सकते हैं कि समान आधार और बराबर ऊँचाई के त्रिभुजों का क्षेत्रफल बराबर है।

प्रश्न 4.
आधार 6 cm वाले एक अधिक कोण त्रिभुज (obtuse angled triangle) त्रिभुज ABC पर विचार करते हैं।
इसकी ऊँचाई AD शीर्ष A से DC पर लम्ब है जो त्रिभुज के बाह्य स्थित है।
क्या आप इस त्रिभुज का क्षेत्रफल ज्ञात कर सकते हैं ?
MP Board Class 7th Maths Solutions Chapter 11 परिमाप और क्षेत्रफल Ex 11.1 image 14
हल:
हाँ, इसका क्षेत्रफल ज्ञात कर सकते हैं।
∆ABC का क्षेत्रफल = \(\frac { 1 }{ 2 } \) × आधार × ऊँचाई
= \(\frac { 1 }{ 2 } \) × BC × AD
= \(\frac { 1 }{ 2 } \) × 6 × 4 = 12 cm2

पाठ्य-पुस्तक पृष्ठ संख्या # 232-234

MP Board Class 7th Maths Solutions

MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.4

MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.4

प्रश्न 1.
∆ ABC की रचना कीजिए, जब m∠A= 60°, m∠B = 30° और AB = 5.8 cm दिया है।
हल:
रचना के पद :

  1. सर्वप्रथम आधार AB = 5.8 cm का एक रेखाखण्ड खींचा।
    MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.4 image 1
  2. AB के बिन्दु A और B पर क्रमश: 60° और 30° के कोण अन्तरित करती हुई दो किरणें AX और BY खींची, जो परस्पर बिन्दु C पर काटती हैं।

अतः प्राप्त ∆ ABC अभीष्ट त्रिभुज है।

MP Board Solutions

प्रश्न 2.
∆ PQR की रचना कीजिए, यदि PQ = 5 cm, m ∠PQR = 105° और m ∠QRP = 40° दिया है।
(संकेत : त्रिभुज के कोण योग गुण को याद कीजिए।)
हल:
∆ POR बनाने के लिए पहले m∠P ज्ञात करते हैं।
∵ m∠P + m∠Q + m∠R = 180°
∴ m∠P + 105° + 40° = 180°
या m∠P = 180° – (105° + 40°) = 35°
MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.4 image 2

रचना के पद:

  1. सर्वप्रथम आधार PQ = 5 cm का एक रेखाखण्ड खींचा।
  2. PQ के बिन्दु P और Q पर क्रमशः 350 और 105° के कोण अन्तरित करती हुई दो किरणें PM और OY खीर्ची जो परस्पर R पर काटती हैं।

अतः प्राप्त ∆ PQR अभीष्ट त्रिभुज है।

MP Board Solutions

प्रश्न 3.
जाँच कीजिए कि आप ∆ DEF की रचना कर सकते हैं या नहीं, यदि EF = 7.2 cm, m∠E = 110° और m∠F = 80° है। अपने उत्तर की पुष्टि कीजिए।
हल:
यहाँ, m∠E = 110°, m∠F = 80°
अर्थात m∠E + m∠F = 1100 + 80° = 190° > 180°
चूँकि त्रिभुज के तीनों अन्त:कोणों का योग 180° होता है।
अत: ∆ DEF की रचना नहीं की जा सकती है।

पाठ्य-पुस्तक पृष्ठ संख्या # 220

MP Board Class 7th Maths Solutions

MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.3

MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.3

प्रश्न 1.
∆ DEF की रचना कीजिए, ताकि DE = 5 cm, DF = 3 cm और m ∠EDF = 90° हो।
हल:
रचना के पद:

  1. सर्वप्रथम आधार DE = 5 cm का एक रेखाखण्ड खींचा।
    MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.3 image 1
  2. DE के बिन्दु D पर 90° का कोण बनाते हुए एक किरण DX खींची तथा जिसमें से DF = 3 cm का रेखाखण्ड काटा।
  3. F और E को मिलाया।

अतः प्राप्त ∆ DEF अभीष्ट त्रिभुज है।

MP Board Solutions

प्रश्न 2.
एक समद्विबाहु त्रिभुज की रचना कीजिए, जिसकी प्रत्येक समान भुजा की लम्बाई 6.5 cm हो और उनके बीच का कोण 110° का हो।
हल:
रचना के पद:

  1. सर्वप्रथम आधार AB = 6.5 cm का रेखाखण्ड खींचा।
    MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.3 image 2
  2. AB के बिन्दु B पर ∠ABX = 110° का कोण बनाते हुए एक किरण BX खींची।
  3. रेखा BX में से BC = 6.5 cm काटकर रेखाखण्ड BC प्राप्त किया।
  4. C और A को मिलाया। अतः प्राप्त ∆ABC अभीष्ट समद्विबाहु त्रिभुज है।

MP Board Solutions

प्रश्न 3.
BC = 7.5 cm,AC = 5 cm और m∠C = 60° वाले ∆ABC की रचना कीजिए।
हल:
रचना के पद :

  1. सर्वप्रथम आधार BC = 7.5 cm का एक रेखाखण्ड खींचा।
  2. BC के बिन्दु C पर ∠BCX = 60° बनाते हुए एक किरण CX खींची।
  3. किरण CX में से AC = 5 cm काटकर रेखाखण्ड AC प्राप्त किया।
  4. A व B को मिलाया।

अतः प्राप्त ∆ ABC अभीष्ट त्रिभुज है।
MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.3 image 3

पाठ्य-पुस्तक पृष्ठ संख्या # 218

MP Board Solutions

सोचिए, चर्चा कीजिए एवं लिखिए

प्रश्न 1.
उपर्युक्त उदाहरण में, एक भुजा की लम्बाई और दो कोणों के माप दिए गए थे। अब निम्नलिखित समस्या का अध्ययन कीजिए:
∆ ABC में यदि AC = 7 cm, m∠A = 60° और m∠B = 50° है, तो क्या आप त्रिभुज की रचना कर सकते हैं ? (त्रिभुज का कोण योग गुण आपकी सहायता कर सकता है।)
हल:
यहाँ, हमें AC, ∠A तथा ∠B दिया हुआ है। त्रिभुज के कोण योग गुणं से तीसरा कोण ∠C ज्ञात करेंगे।
∴ m∠A + m∠B + m∠C = 180°
∴ 60° + 50° + m∠C = 180°
या m∠C = 180° – (60° + 50°) = 70°
इन मापों के आधार पर ∆ ABC की रचना की जा सकती है।

MP Board Class 7th Maths Solutions

MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.2

MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.2

प्रश्न 1.
∆XYZ की रचना कीजिए, जिसमें XY = 4.5 cm, YZ = 5 cm और ZX= 6 cm है।
हल:
रचना के पद :

  1. सर्वप्रथम आधार YZ = 5 cm का रेखाखण्ड खींचा।
  2. YZ के बिन्दु Y को केन्द्र मानकर व 4.5 cm त्रिज्या लेकर एक चाप लगाया।
    MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.2 image 1
  3. YZ के बिन्दु z को केन्द्र मानकर व 6 cm त्रिज्या लेकर एक और चाप लगाया, जो पहले वाले चाप को x पर काटता है।
  4. x को Y व z से मिलाकर XY और XZ रेखाखण्ड खींचे।

अतः प्राप्त ∆XYZ अभीष्ट त्रिभुज है।

MP Board Solutions

प्रश्न 2.
5.5 cm भुजा वाले एक समबाहु त्रिभुज की रंचना कीजिए।
हल:
रचना के पद:

  1. सर्वप्रथम आधार BC = 5.5 cm का एक रेखाखण्ड खींचा।
    MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.2 image 2
  2. BC के बिन्दु B व C को केन्द्र मानकर 5.5 cm त्रिज्या लेकर दो चाप लगाए जो परस्पर बिन्दु A पर काटते हैं।
  3. A को B व C से मिलाकर क्रमश: AB व AC रेखाखण्ड प्राप्त किए।

प्राप्त ∆ ABC अभीष्ट समबाहु त्रिभुज है।

प्रश्न 3.
∆ PQR की रचना कीजिए, जिसमें PQ = 4cm, QR = 3.5 cm और PR = 4 cm है। यह किस प्रकार का त्रिभुज है ?
हल:
रचना के पद :

  1. सर्वप्रथम आधार QR = 3.5 cm का एक रेखाखण्ड खींचा।
  2. QR के बिन्दुव Q को क्रमशः केन्द्र मानकर व 4 cm की त्रिज्या लेकर दो चाप लगाए जो परस्पर बिन्दु P पर काटते हैं।
  3. P को ए व R से मिलाकर क्रमशः PQ व PR रेखाखण्ड प्राप्त किए।

MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.2 image 3

प्राप्त ∆ PQR अभीष्ट त्रिभुज है।
चूँकि PQ = PR = 4 cm
अतः ∆ PQR समद्विबाहु त्रिभुज है।

MP Board Solutions

प्रश्न 4.
∆ ABC की रचना कीजिए,ताकि AB = 2.5cm, BC = 6 cm और AC = 6.5 cm हो। ∠B को मापिए।
हल:
रचना के पद :

  1. सर्वप्रथम आधार BC = 6 cm का एक रेखाखण्ड खींचा।
    MP Board Class 7th Maths Solutions Chapter 10 प्रायोगिक ज्यामिती Ex 10.2 image 54
  2. BC के बिन्दु B को केन्द्र मानकर व 2.5 cm की त्रिज्या लेकर एक चाप लगाया।
  3. BC के बिन्दु C को केन्द्र मानकर व 6.5 cm की त्रिज्या लेकर एक और चाप लगाया, जो पहले चाप को बिन्दु A पर काटता है।
  4. A को B व C से मिलाकर क्रमश: AB व AC रेखाखण्ड प्राप्त किए।

प्राप्त ∆ ABC अभीष्ट त्रिभुज है।
मापने पर, ∠B = 90°

पाठ्य-पुस्तक पृष्ठ संख्या # 217

MP Board Class 7th Maths Solutions