MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना Ex 16.1

MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना Ex 16.1

प्रश्न 1.
निम्नलिखित में से प्रत्येक में अक्षरों के मान ज्ञात कीजिए तथा सम्बद्ध चरणों के लिए कारण भी दीजिए –
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 1
हल:
1. इकाई स्तम्भ को जोड़ने पर अर्थात् A + 5 को जोड़ने पर हम इकाई का अंक 2 प्राप्त करते हैं।
अत: A = 7, (∴ A + 5 = 7 + 5 = 12)
अब दहाई स्तम्भ को जोड़ने पर
1 + 3 + 2 = B या B = 6
अतः अब पहेली इस प्रकार होगी –
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 2
∴ A = 7, B = 6

2. इकाई स्तम्भ से, A + 8 = 3
अर्थात् इकाई का अंक = 3 होना चाहिए।
अतः A = 5, (∴ A + 8 = 5 + 8 = 13)
अब दहाई स्तम्भ से, 1 + 4 + 9 = B या B = 14
∴ स्पष्ट है, B = 4 और C = 1 अब पहेली इस प्रकार होगी –
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 3
∴ A = 5, B = 4 तथा C = 1

3. क्योंकि इकाई का अंक A x A = A है।
∴ A = 1, A = 5 या A = 6
जबकि A = 1, तब,
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 4
अत: A ≠ 1
जबकि A = 5, तब,
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 17
अत: A ≠ 5
जबकि A = 6, तब,
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 5
अतः A = 6

4. दी हुई पहेली से,
B + 7 = A तथा A + 3 = 6
अतः सम्भावित मान
0 + 7 = 7 अर्थात् A = 7 परन्तु 7 + 3 ≠ 6
1 + 7 = 8 अर्थात् A = 8 परन्तु 8 + 3 ≠ 6
2 + 7 = 9 अर्थात् A = 9 परन्तु 9 + 3 ≠ 6
3 + 7 = 10 अर्थात् A = 0 परन्तु 1 + 0 + 3 ≠ 6
4 + 7 = 11 अर्थात् A = 1 परन्तु 1 + 1 + 3 ≠ 6
5 + 7 = 12 अर्थात् A = 2 और 1 + 2 + 3 = 6
B = 5 तथा A = 2
अब पहेली इस प्रकार है –
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 6
A = 2 और B = 5

5. ∴ इकाई स्तम्भ 3 x B = B, ∴ B = 0
अब पहेली इस प्रकार है –
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 7
अब, 3 x A = A, ∴ A = 5
अब, पहेली इस प्रकार है –
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 8
∴ A = 5, B = 0 और C = 16
6. ∴ इकाई स्तम्भ 5 x B = B अर्थात् B = 0 या 5
यदि B = 0, तब
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 18
अब, 5 x A = A या A = 0 या 5
परन्तु A0, A = 5 के लिए
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 19
∴ A = 5, B = 0 और C = 2
यदि B = 5, तब
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 9
अब, 5 x A + 2 = A ⇒ A = 2, ∴ 5 x 2 + 2 = 12
∴ इकाई का अंक = 2 = A
∴ B = 5 के लिए,
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 10
∴ A = 2, B = 5 और C = 1

7.
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 11
BBB के सम्भव मान: 111, 222, 333, आदि
∴ 111 ÷ 6 = 18 और शेषफल = 3 ∴ B ≠ 3
222 ÷ 6 = 37, शेषफल = 0, अतः भागफल 37 ≠ A2
333 ÷ 6 = 55, शेषफल = 3, अतः भागफल 55 ≠ A3
444 + 6 = 74, शेषफल = 4, अतः भागफल 74 ≠ A4
अतः A = 7 और B = 4

8. इकाई स्तम्भ से 1 + B = 0, इकाई स्तम्भ का अंक 0 है।
∴ B = 9 अब
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 12
परन्तु 90 – 19 = 71 अत: A1 = 71 या A = 7
अतः A = 7, B = 9

9. इकाई स्तम्भ से,
B + 1 = 8 अतः इकाई अंक 8 है।
B = 8 – 1 = 7
∴ B स्वयं एक अंक है, ∴ B = 7
अब
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 13
दहाई स्तम्भ से, A + 7 = 1
अतः A का इकाई अंक 1 होना चाहिए।
∴ A स्वयं एक अंक है। अत: A = 4
अब, पहेली
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 14
अतः A = 4, B = 7

10. दहाई के स्तम्भ से,
2 + A = 0
∴ संख्या का इकाई अंक 0 होना चाहिए।
∴ A = 8, तब
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 15
अब, 8 + B = 9, ∴ B = 9 – 8 = 1
अब,
MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना ex 16.1 16
∴ A = 8 और B = 1

पाठ्य-पुस्तक पृष्ठ संख्या # 268

प्रयास कीजिए (क्रमांक 16.6)

MP Board Solutions

(पहला प्रश्न आपकी सहायता के लिए किया हुआ है।)
प्रश्न 1.
यदि विभाजन N ÷ 5 से शेषफल, 3 प्राप्त होता है, तो N की इकाई अंक क्या हो सकता है?
हल:
इकाई के अंक को 5 से भाग देने पर शेषफल 3 आना चाहिए। अतः इकाई का अंक 3 या 8 होगा।

प्रश्न 2.
यदि विभाजन N ÷ 5 से शेषफल 1 प्राप्त होता है, तो N का इकाई अंक क्या हो सकता है?
हल:
इकाई के अंक को 5 से भाग देने पर शेषफल 1 आना चाहिए।
अतः इकाई का अंक 1 या 6 होगा।

प्रश्न 3.
यदि विभाजन N 5 से शेषफल 4 प्राप्त होता है, तो N की इकाई का अंक क्या हो सकता है?
हल:
इकाई के अंक को 5 से भाग देने पर शेषफल 4 आना चाहिए।
अतः इकाई का अंक 4 या 9 होगा।

प्रयास कीजिए (क्रमांक 16.7)

(पहला प्रश्न आपकी सहायता के लिए किया हुआ है।)
प्रश्न 1.
यदि विभाजन N ÷ 2 से शेषफल 1 प्राप्त होता है, तो N की इकाई का अंक क्या हो सकता है?
हल:
N विषम है। इसलिए इसकी इकाई का अंक विषम होगा। अतः N की इकाई का अंक 1, 3, 5, 7 या 9 होगा।

MP Board Solutions

प्रश्न 2.
यदि विभाजन N ÷ 2 से कोई शेष प्राप्त नहीं होता (अर्थात् शेषफल 0 है), तो N की इकाई का अंक क्या हो सकता है?
हल:
N सम होना चाहिए। इसलिए इसकी इकाई का अंक सम होगा। – अंत: N की इकाई का अंक 0, 2, 4, 6 या 8 होगा।

प्रश्न 3.
मान लीजिए कि विभाजन N ÷ 5 से शेषफल 4 और विभाजन N ÷ 2 से 1 प्राप्त होता है। N की इकाई का अंक क्या होना चाहिए?
हल:
क्योंकि N ÷ 5 से शेषफल 4 प्राप्त होता है। अत: N की इकाई का अंक 4 या 9 होगा।
N ÷ 2 से शेषफल 1 प्राप्त होता है। इसलिए इकाई का अंक विषम होना चाहिए।
अतः N की इकाई का अंक 1, 3, 5, 7 या 9 होगा। परन्तु यहाँ 9 दोनों स्थितियों को सन्तुष्ट करेगा।
अतः N की इकाई का अंक 9 होगा।

पाठ्य-पुस्तक पृष्ठ संख्या # 270

प्रयास कीजिए (क्रमांक 16.8)

प्रश्न 1.
निम्नलिखित संख्याओं की 9 से विभाज्यता की जाँच कीजिए –

1. 108
2. 616
3. 294
4. 432
5. 927

हल:
हम जानते हैं कि कोई संख्या 9 से विभाज्य होती है, यदि इसके अंकों का योग 9 से विभाज्य हो।

1. संख्या = 108
संख्या के अंकों का योग = 1 + 0 + 8 = 9, यह 9 से विभाज्य है।
इसलिए 108, 9 से विभाज्य है।

2. संख्या = 616
संख्या के अंकों का योग = 6 + 1 + 6 = 13, यह 9 से विभाज्य नहीं है।
इसलिए 616, 9 से विभाज्य नहीं है।

3. संख्या = 294
संख्या के अंकों का योग = 2 + 9 + 4 = 15, यह 9 से विभाज्य नहीं है।
इसलिए 294, 9 से विभाज्य नहीं है।

4. संख्या = 432
संख्या के अंकों का योग = 4 + 3 + 2 = 9, यह 9 से विभाज्य है।
इसलिए 432, 9 से विभाज्य है।

5. संख्या = 927
संख्या के अंकों का योग = 9 + 2 + 7 = 18, यह 9 से विभाज्य है।
इसलिए 927, 9 से विभाज्य है।

सोचिए, चचों कोजिए और लिखिए।

MP Board Solutions

प्रश्न 1.
आप देख चुके हैं कि 450, 10 से विभाज्य है। यह 2 और 5 से भी विभाज्य है, जो 10 के गुणनखण्ड हैं। इसी प्रकार संख्या 135, 9 से विभाज्य है। यह 3 से भी विभाज्य है, जो 9 का एक गुणनखण्ड है।
क्या आप कह सकते हैं कि यदि कोई संख्या किसी संख्या m से विभाज्य हो, तो वह m के प्रत्येक गुणनखण्ड से भी विभाज्य होगी?
हल:
हाँ, यदि कोई संख्या m से विभाज्य हो, तो वह m के प्रत्येक गुणनखण्ड से भी विभाज्य होगी।

प्रश्न 2.
1. एक तीन अंकों की संख्या abc की 100 a + 10b + c के रूप में लिखिए। अब 100a + 10b + c = 99a + 11b + (a – b + c)
= 11 (9a + b) + (a – b + c)
यदि संख्या abc, 11 से विभाज्य है, तो आप (a-b+ c) के बारे में क्या कह सकते हैं ? क्या यह आवश्यक है कि (a+c-b), 11 से विभाज्य हो?

2. एक चार अंकों की संख्या abcd को इस प्रकार लिखिए –
1000a + 100b + 10c + d = (1001 a + 99b + 11c) -(a – b + c – d)
= 11 (91a + 9b + c) + [(b + d) – (a + c)]
यदि संख्या abcd, 11 से विभाज्य है, तो (b + d) – (a + c) के बारे में आप क्या कह सकते हैं?

3. उपर्युक्त (i) और (ii) से, क्या आप कह सकते हैं कि कोई संख्या 11 से विभाज्य होगी, यदि इसके विषम स्थानों के अंकों का योग और समस्थानों के अंकों के योग का अन्तर 11 से विभाज्य होगा?

हल:
1. हाँ, यह आवश्यक है कि (a + c – d), 11 से विभाज्य होगी।
2. यदि संख्या abcd, 11 से विभाज्य है, तब (b + d) – (a + c), 11 से विभाज्य होगी।
3. हाँ, हम कह सकते हैं कि यदि कोई संख्या 11 से विभाज्य होगी यदि इसके विषम स्थानों के अंकों का योग और समस्थानों के अंकों का योग का अन्तर 11 से विभाज्य हो।

पाठ्य-पुस्तक पृष्ठ संख्या # 271

MP Board Solutions

प्रयास कीजिए (क्रमांक 16.9)

प्रश्न 1.
निम्नलिखित संख्याओं की 3 से विभाज्यता की जाँच कीजिए –

1. 108
2. 616
3. 294
4. 432
5. 927.

हल:
हम जानते हैं कि कोई संख्या 3 से विभाज्य होती है, यदि इसके अंकों का योग 3 से विभाज्य हो।
1. संख्या = 108
अंकों का योग = 1 + 0 + 8 = 9, यह 3 से विभाज्य है।
इसलिए 108,3 से विभाज्य है।

2. संख्या = 616
अंकों का योग = 6 + 1 + 6 = 13, यह 3 से विभाज्य नहीं है।
इसलिए 616, 3 से विभाज्य नहीं है।

3. संख्या = 294
अंकों का योग = 2 + 9 + 4 = 15, यह 3 से विभाज्य है।
इसलिए 294, 3 से विभाज्य है।

4. संख्या = 432
अंकों का योग = 4 + 3 + 2 = 9, यह 3 से विभाज्य है।
इसलिए 432, 3 से विभाज्य है।

5. संख्या = 927
अंकों का योग = 9 + 2 + 7 = 18, यह 3 से विभाज्य है।
इसलिए 927, 3 से विभाज्य है।

MP Board Class 8th Maths Solutions

MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.4

MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.4

Question 1.
Multiply the binomials.
(i) (2x + 5) and (4x – 3)
(ii) (y – 8) and (3y – 4)
(iii) (2.5l – 0.5 m) and (2.5l +0.5 m)
(iv) (a + 3b) and (x + 5)
(v) (2pq + 3q2) and (3pq – 2q2)
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.4 1
Solution:
(i) (2x + 5) × (4x – 3) = 2x (4x – 3) + 5(4x – 3) = 8x2 – 6x + 20x – 15 = 8x2 + 14x – 15
(ii) (y – 8) × (3y – 4) = y(3y – 4) – 8(3y – 4)
= 3 y2 – 4y – 24y + 32 = 3y2 – 28y + 32
(iii) (2.5l – 0.5m) × (2.5l + 0.5m)
= 2.5l (2.5l + 0.5m) – 0.5 m (2.5l + 0.5m)
= 6.25l2 + 1.25lm – 1.25lm – 0.25m2 = 6.25l2 – 0.25m2
(iv) (a + 3b) × (x + 5) = a(x + 5) + 3b(x + 5)
= ax + 5a + 3 bx + 15 b
(v) (2pq + 3q2) × (3pq – 2q2)
= 2pq (3pq – 2q2) + 3q2 (3pq – 2q2)
= 6p2q2 – 4pq3 + 9pq3 – 6q4
= 6 p2q2 + 5pq3 – 6q4
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.4 2
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.4 3

MP Board Solutions

Question 2.
Find the product
(i) (5 – 2x)(3 + x)
(ii) (x + 7y)(7x – y)
(iii) (a2 + b)(a + b2)
(iv) (p2 – q2)(2p + q)
Solution:
(i) (5 – 2x) × (3 + x) = 5(3 + x) – 2x(3 + x)
= 15 + 5x – 6x – 2x2 – 15 – x – 2x2
(ii) (x + 7y)(7x – y) = x(7x – y) + 7y(7x – y)
=7x2 – xy + 49xy – 7y2 = 7x2 + 48xy – 7y2
(iii) (a2 + b) (a + b2) = a2 (a + b2) + b (a + b2)
= a3 + a2b2) + ab + b3
(iv) (p2 – q2) (2p + q) = p2 (2p + q) – q2 (2p + q)
= 2p3 + p2q – 2q2p – q3

MP Board Solutions

Question 3.
Simplify.
(i) (x2 – 5)(x + 5) + 25
(ii) (a2 + 5)(b3 + 3) + 5
(iii) (t + s2)(t2 – s)
(iv) (a + b)(c – d) + (a – b)(c + d) + 2(ac + bd)
(v) (x + y)(2x + y) + (x + 2y)(x – y)
(vi) (x + y)(x2 – xy + y2)
(vii) (1 .5x – 4y)(1 .5x + 4y + 3) – 4.5x + 12y
(viii) (a + b + c)(a + b – c)
Solution:
(i) (x2 – 5) (x + 5) + 25
= x2(x +5) – 5(x + 5) +25
=x3+ 5x2 – 5x – 25 + 25 = r3+ 5r2 – 5x

(ii) (a2 + 5)(b3 + 3) + 5
= a2 (b3 + 3) + 5(b3 + 3) + 5
= a2b3 + 3a2 + 5b3 + 15 + 5
= a2b3 + 3a2 + 5b3 + 20

(iii) (t + s2) (t2 – s) = t(t2 – s) + s2(t2 – s)
= t3 – ts +s2t2 – s3

(iv) (a + b)(c – d) + (a – b)(c + d) + 2(ac + bd)
=a(c – d) + b(c – d) + a(c + d) – b(c + d) + 2a + 2bd
= ac – ad + bc – bd + ac + ad – bc – bd + 2ac + 2bd
= 4ac

(v) (x + y)(2x + y) + (x + 2y)(x – y)
= x(2x + y) + y(2x + y) + x(x – y) + 2y(x – y)
=2x2 + xy + 2xy + y2 + x2 – xy + 2xy – 2y2
= 3x2 + 4xy – y2

(vi) (x + y) (x2 – xy + y2)
= x (x2 – xy + y2) + y (x2 – xy + y2)
= x3 – x2y + xy2 + x2y – xy2 + y3 = x3 + y3

(vii) (1.5x – 4y) (1.5x + 4y + 3) – 4.5x + 12y
= 1.5x (1.5x + 4y + 3) – 4y (1.5x + 4y + 3) – 4.5x + 12y
= 2.25x2 + 6xy + 4.5x – 6xy – 16y2 – 12y – 4.5x + 12y
= 2.25x2 – 16y2

(viii) (a + b + c) (a + b – c)
= a (a+ b – c) + b (a+ b – c) + c (a + b – c)
= a2 + ab – ac + ab + b2 – bc + ac + bc – c2
= a2 + 2 ab + b2 – c2

MP Board Class 8th Maths Solutions

MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.3

MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.3

Question 1.
Carry out the multiplication of the expressions in each of the following pairs.
(i) 4p, q + r
(ii) ab, a – b
(iii) a + b, 7a2b2
(iv) a2 – 9, 4a
(v) pq + qr + rp, 0
Solution:
(i) 4p × (q + r) = 4p × q + 4p × y = 4pq + 4pr
(ii) ab × (a – b) = a2b – ab2
(iii) (a + b) × 7a2b2 = 7a3b2 + 7a2b3
(iv) (a2 – 9) × (4a) = 4a3 – 36a
(v) (pq + qr + rp) × 0 = 0

Question 2.
Complete the table.
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.3 50
Solution:
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.3 60

MP Board Solutions

Question 3.
Find the product.
(i) (a2) × (2a22) × (4a26)
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.3 1
(iv) x × x2 × x3 × x4
Solution:
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.3 2

MP Board Solutions

Question 4.
(a) Simplify 3x(4x – 5) + 3 and find its values for
(i) x = 3
(ii) x = \(\frac{1}{2}\)
(b) Simplify a(a2 + a + 1) + 5 and find its value for
(i) o = 0
(ii) a = 1
(iii) a = – 1
Solution:
(a) 3x(4x – 5) + 3 = 12x2 – 15x + 3
(i) For x = 3,
12(3)2 – 15(3) + 3 = 108 – 45 + 3 = 66
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.3 3

(b) a(a2 + a + 1) + 5 = a3 + a2 + a + 5
(i) For a = 0, (0)3 + 02 + 0 + 5 = 5
(ii) For a = 1, 13 + 12 + 1 + 5 = 8
(iii) For a = -1, (-1)3 + (-1)2 + (-1) + 5 = -1 + 1 – 1 + 5 = 4

MP Board Solutions

Question 5.
(a) Add: p(p – q), q(q – r) and r(r – p)
(b) Add : 2x(z – x – y) and 2y(z – y – x)
(c) Subtract: 3l(l -4m + 5n) from 4l(10n – 3m + 2l)
(d) Subtract: 3o(a + b + c) – 2b(a – b + c) from 4c(-a + b + c)
Solution:
(a) First expression
= p(p – q) = p2 – pq
Second expression = q(q- r) = q2 – qr… (ii)
Third expression = r(r – p) = r2 – pr ….(iii)
Adding (i), (ii) and (iii), we get
p2 – pq + q2 – qr + r2 – pr = p2 + q2 + r2 – pq – qr – pr

(b) First expression = 2x(z -x-y)
= 2xz – 2x2 – 2xy
Second expression = 2y(z -y-x)
= 2yz – 2y2 – 2xy
Adding the two expressions, we get
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.3 4

(c) First expression = 3l(l – 4m + 5n)
= 3l2 – 121m + 15In
Second expression = 4l(10n – 3m + 2l)
= 40ln – 12lm + 8l2
Subtracting the two expressions, we get 40/n –
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.3 5

(d)
First expression= 3a(a + b + c) – 2b(a – b + c)
= 3a2+3ab + 3ac – 2ab + 2b2 – 2bc
= 3a2 + ab + 2b2 + 3ac – 2bc
Second expression = 4c(- a + b + c)
= – 4ac + 4bc + 4c2
Subtracting the two expressions, we get
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.3 6

MP Board Class 8th Maths Solutions

MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.2

MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.2

Question 1.
Find the product of the following pairs of monomials.
(i) 4, 7p
(ii) -4p, 7p
(iii) -4p, 7pq
(iv) 4p3, -3p
(v) 4p, 0
Solution:
(i) 4 × 7p = 28p
(ii) -4p × 7p = -28p
(iii) -4p × 7pq = -28p
(iv) 4p3 × -3p = -12p4
(v) 4p × 0 = 0

Question 2.
Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.
(p, q); d (10m, 5n); (20x2, 5y2); (4x, 3x2); (3mn, 4np)
Solution:
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.2 1

Question 3.
Complete the table of products.
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.2 2
Solution:
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.2 3

MP Board Solutions

Question 4.
Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
(i) 5a, 3a2, 7a4
(ii) 2p, 4q, 8r
(iii) xy, 2x2y, 2xy2
(iv) a, 2b, 3c
Solution:
MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.2 4

MP Board Solutions

Question 5.
Obtain the product of
(i) xy, yz, zx
(ii) a, -a2, a2
(iii) 2, 4y, 8y2, 16y3
(iv) a, 2b, 3c. 6abc
(v) m, – mn, mnp
Solution:
(i) xy × yz × zx = x2y2z2
(ii) a × (-a2) × a3 = – a6
(iii) 2 × 4y × 8y2 × 16y3 = 1024y6
(iv) a × 2b × 3c × 6abc = 36a2b2c2
(v) m × (- mn) × mnp = – m3n2p

MP Board Class 8th Maths Solutions

MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.1

MP Board Class 8th Maths Solutions Chapter 9 Algebraic Expressions and Identities Ex 9.1

Question 1.
Identify the terms, their coefficients for each of the following expressions.
(i) 5xyz2 – 3zy
(ii) 1 + x + x2
(iii) 4x2y2 – 4x2y2z2 + z2
(iv) 3 – pq + qr – rp
(v) \(\frac{x}{2}+\frac{y}{2}-x y\)
(vi) 0.3a – 0.6ab + 0.5b
Solution:
MP Board Class 8th Maths Solutions Chapter 8 Comparing Quantities Ex 9.1 1
MP Board Class 8th Maths Solutions Chapter 8 Comparing Quantities Ex 9.1 2
MP Board Solutions

Question 2.
Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories?
x + y, 1000, x + x2 + x3 + x4, 7 + y + 5x, 2y – 3y2, 2y – 3y2 + 4y3, 5x – 4y + 3xy, 4z – 15z2, ab + bc + cd + da, pqr, p2q, 9a2, 2p + 2q
Solution:
MP Board Class 8th Maths Solutions Chapter 8 Comparing Quantities Ex 9.1 3

MP Board Solutions

Question 3.
Add the following:
(i) ab – bc, bc – ca, ca – ab
(ii) a – b + ab, b – c + bc, c – a + ac
(iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2
(iv) l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl
Solution:
MP Board Class 8th Maths Solutions Chapter 8 Comparing Quantities Ex 9.1 4
MP Board Class 8th Maths Solutions Chapter 8 Comparing Quantities Ex 9.1 5

MP Board Solutions

Question 4.
(a) Subtract 4a – 7ab + 3b + 12 from 12a – 9ab + 5b – 3
(b) Subtract 3xy + 5yz – 7zx from 5xy – 2yz – 2zx + 10xyz
(c) Subtract 4p2q – 3pq + 5pq2 – 8p + 7q – 10 from 18 – 3p – 11q + 5pq – 2pq2 + 5p2q
Solution:
MP Board Class 8th Maths Solutions Chapter 8 Comparing Quantities Ex 9.1 6
MP Board Class 8th Maths Solutions Chapter 8 Comparing Quantities Ex 9.1 7

MP Board Class 8th Maths Solutions

MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.2

MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.2

Question 1.
Express the following numbers in standard form.
(i) 0.0000000000085
(ii) 0.00000000000942
(iii) 6020000000000000
(iv) 0.00000000837
(v) 31860000000
Solution:
(i) 0.0000000000085 = 8.5 × 10-12
(ii) 0.00000000000942 = 9.42 × 10-12
(iii) 6020000000000000 = 6.02 × 1015
(iv) 0.00000000837 = 8.37 × 10-9
(v) 31860000000 = 3.186 × 1010

MP Board Solutions

Question 2.
Express the following numbers in usual form.
(i) 3.02 × 10-6
(ii) 4.5 × 104
(iii) 3 × 10-8
(iv) 1.0001 × 109
(v) 5.8 × 1012
(vi) 3.61492 × 106
Solution:
(i) We have, 3.02 × 10-6 = 0.00000302
(ii) We have, 4.5 × 104 = 45000
(iii) We have, 3 × 10-8 = 0.00000003
(iv) We have, 1.0001 × 109 = 1000100000
(v) We have, 5.8 × 1012 = 5800000000000
(vi) We have, 3.61492 × 106 = 3614920

MP Board Solutions

Question 3.
Express the number appearing in the following statements in standard form.
(i) 1 micron is equal to \(\frac{1}{1000000}\) m.
(ii) Charge of an electron is 0. 000,000,000,000,000,000,16 coulomb.
(iii) Size of a bacteria is 0.0000005 m.
(iv) Size of a plant cell is 0.00001275 m.
(v) Thickness of a thick paper is 0.07 mm.
Solution:
(i) Standard form of given statement = 1 × 10-8.
(ii) Standard form of given statement = 1.6 × 10-19.
(iii) Standard form of given statement = 5 × 10-7.
(iv) Standard form of given statement = 1.275 × 10-5.
(v) Standard form of given statement = 7 × 10-2.

MP Board Solutions

Question 4.
In a stack there are 5 books each of thickness 20 mm and 5 paper sheets each of thickness 0.016 mm. What is the total thickness of the stack.
Solution:
Total number of books = 5
Thickness of each book = 20 mm
∴ Thickness of 5 books = (5 × 20) mm = 100 mm
Thickness of each paper sheet = 0.016 mm
∴ Thickness of 5 paper sheets = (5 × 0.016) mm = 0.08 mm
Hence, total thickness of stack = 100 mm + 0.08 mm
= 100.08 mm = 1.0008 × 102 mm

MP Board Class 8th Maths Solutions

MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1

MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1

Question 1.
Evaluate
(i) 3-2
(ii) (-4)-2
(iii) \(\)
Solution:
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 1

MP Board Solutions

Question 2.
Simplify and express the result in power notation with positive exponent.
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 2
Solution:
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 50
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 3
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 4

MP Board Solutions

Question 3.
Find the value of
(i) (30 + 4-1) × 22
(ii) (2-1 × 4-1) ÷ 2-2
(iii) \(\left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-2}+\left(\frac{1}{4}\right)^{-2}\)
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 5
Solution:
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 6
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 7

Question 4.
Evaluate
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 9
Solution:
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 10
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 11

MP Board Solutions

Question 5.
Find the value of m for which 5m ÷ 5-3 = 55.
Solution:
We have, 5m ÷ 5-3 = 55
⇒ 5m-(-3) = 55 [∵ am + an =am + n]
⇒ 5m + 3 = 55
⇒ m + 3 = 5 [∵ am = an ⇒ m = n]
⇒ m = 5 – 3 = 2

MP Board Solutions

Question 6.
Evaluate
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 12
Solution:
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 13

Question 7.
Simplify.
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 14
Solution:
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 15
MP Board Class 8th Maths Solutions Chapter 12 Exponents and Powers Ex 12.1 16

MP Board Class 8th Maths Solutions

MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.4

MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.4

Question 1.
Given a cylindrical tank, in which situation will you find surface area and in which situation volume.
(a) To find how much it can hold.
(b) Number of cement bags required to plaster it.
(c) To find the number of smaller tanks that can be filled with water from it.
Solution:
(a) To find how much a cylinder can hold, we need to find the volume of the cylindrical tank.
(b) To find the number of cement bags required to plaster the tank, we need to find the surface area of the cylindrical tank.
(c) To find the number of smaller tanks that can be filled with water from the bigger tank, we need to find the volume of the big cylindrical tank and one small tank.

MP Board Solutions

Question 2.
Diameter of cylinder A is 7 cm, and the height is 14 cm. Diameter of cylinder B is 14 cm and height is 7 cm. Without doing any calculations can you suggest whose volume is greater ? Verify it by finding the volume of both the cylinder. Check whether the cylinder with greater volume also has greater surface area?
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.4 1
Solution:
∵ Volume of cylinder = πr2h
Now, radius of cylinder B is double the radius of cylinder A and height of cylinder B is half the height of A. Due to the square of radius, the radius will assert greater impact in the volume of cylinder than the height. So, volume of cylinder B will be greater.
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.4 3
Hence, cylinder B has both, greater volume and greater surface area.

MP Board Solutions

Question 3.
Find the height of a cuboid whose base area is 180 cm2 and volume is 900 cm3 ?
Solution:
We have, base area = 180 cm2,
Volume = 900 cm3
To find, height of a cuboid = h cm, say
We know, Volume = Base area × Height of a cuboid
⇒ 900 = 180 × h ⇒ h = 5 cm.

Question 4.
A cuboid is of dimensions 60 cm × 54 cm × 30 cm. How many small cubes with side 6 cm can be placed in the given cuboid?
Solution:
We have,
Big cuboid dimensions = 60 cm × 54 cm × 30 cm
Side of a small cube = 6 cm
Number of cubes that can be placed in the given cuboid
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.4 4

MP Board Solutions

Question 5.
Find the height of the cylinder whose volume is 1.54 m3 and diameter of the base is 140 cm?
Solution:
We have, volume of the cylinder = 1.54 m3 = 1.54 × 106 cm3
Diameter = 140 cm,
Radius = 140 ÷ 2 = 70 cm
∵ volume of the cylinder = πr2h
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.4 5
⇒ 100 cm = h
∴ Height of the cylinder is 100 cm.

MP Board Solutions

Question 6.
A milk tank is in the form of cylinder whose radius is 1.5 m and length is 7 m. Find the quantity of milk in litres that can be stored in the tank?
Solution:
We have, radius of the cylindrical tank = 1.5 m and length = 7 m
∴ Volume of tank = πr2h = π(1 .5)2 × 7
= 49.5 m3 = 49500 litres. [∵ 1 m3 = 1000 L]

Question 7.
If each edge of a cube is doubled,
(i) how many times will its surface area increase?
(ii) how many times will its volume increase?
Solution:
Let the edge of the cube be a cm.
After doubling the length, the edge becomes 2a cm.
Surface area of old cube = 6a2 and volume of old cube = a3
Surface area of new cube = 6(2a)2 = 24 a2 and volume of new cube = (2a)3 = 8a3
Hence, surface area increases 4 times and volume increases 8 times if the edge of a cube is doubled.

MP Board Solutions

Question 8.
Water is pouring into a cuboidal reservoir at the rate of 60 litres per minute. If the volume of reservoir is 108 m3, find the number of hours it will take to fill the reservoir.
Solution:
We have,
volume of reservoir = 108 m3 = 108 × 103 L
[∵ 1 m3 = 103 L]
Rate of pouring water = 60 L/minute
Time to fill the reservoir
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.4 6
= 1.8 × 103 min. = 1800 min.= 30 hrs.

MP Board Class 8th Maths Solutions

MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना Ex 16.2

MP Board Class 8th Maths Solutions Chapter 16 संख्याओं के साथ खेलना Ex 16.2

प्रश्न 1.
यदि 21y5, 9 का एक गुणज है, जहाँ y एक अंक है, तोy का मान क्या है?
हल:
क्योंकि 21y5, 9 का एक गुणज है।
इसलिए अंकों का योग = 2 + 1 + y + 5 = 8 + y, 9 का गुणज है।
∴ (8 + y), 0, 9, 18, 27 में से कोई एक संख्या होगी।
परन्तु y एक अंक है, इसलिए y + 8 = 9
या y = 9 – 8 = 1

MP Board Solutions

प्रश्न 2.
यदि 3155, 9 का एक गुणज है, जहाँ : एक अंक है, तो का मान क्या है? आप देखेंगे कि इसके दो उत्तर हैं। ऐसा क्यों है?
हल:
क्योंकि 31z5, 9 का एक गुणज है।
इसलिए अंकों का योग = 3 + 1 + z + 5 = 9 + z, 9 का गुणज है।
∴ (9 + z), 0, 9, 18, 27 में से कोई एक संख्या होगी।
परन्तु z एक अंक है, इसलिए 9 + z = 9, 18, …
अर्थात् 9 + z = 9 या z = 0, 9 + z = 18 या z = 9
इसलिए, z = 0 और = 9
उत्तर यहाँ अंक 0 और 9 दोनों ही अंक क्रमशः संख्या 3105 तथा 3195 बनाते हैं, ये संख्याएँ 9 से विभाज्य हैं।

प्रश्न 3.
यदि 24x, 3 का एक गुणज है, जहाँ x एक अंक है, तोx का मान क्या है?
हल:
क्योंकि 24x, 3 का गुणज है, इसलिए इसके अंकों का योग 6 + x, 3 का एक गुणज है। अर्थात् 6 + x निम्नलिखित में से कोई एक संख्या होगी –
0, 3, 6, 9, 12, 15, 18, …..
परन्तु चूँकि x एक अंक है, इसलिए 6 + x = 6 या 6 + x = 9 या 6 + x = 12 या 6 + x = 15 हो सकता है। अतः x = 0 या 3 या 6 या 9 हो सकता है। इसलिए x का मान इन चारों विभिन्न मानों में से कोई एक हो सकता है।
इसलिए x = 0, 3, 6 या 9

MP Board Solutions

प्रश्न 4.
31:5, 3 का एक गुणज है, जहाँ : एक अंक है, तो का मान क्या हो सकता है?
हल:
क्योंकि 3125, 3 का गुणज है, इसलिए इसके अंकों का योग 9 + z, 3 का एक गुणज है। अर्थात् 6 + x निम्नलिखित में से कोई एक संख्या होगी –
0, 3, 6, 9, 12, 15, 18,…
परन्तु चूँकि x एक अंक है, इसलिए 9 + z = 9 या 9 + z = 12 या 9+ z = 15 या 9 + z = 18 हो सकता है। अतः z = 0 या 3 या 6 या 9 हो सकता है। इसलिए z का मान इन चारों विभिन्न मानों में से कोई एक हो सकता है।
इसलिए 2 = 0, 3, 6 या 9

MP Board Class 8th Maths Solutions

MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3

MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3

Question 1.
There are two cuboidal boxes as shown in the adjoining figure. Which box requires the lesser amount of material to make?
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3 1
Solution:
Surface area of box (a) = 2(lb + bh + hl)
= 2(60 × 40 + 40 × 50 + 50 × 60)
= 2(2400 + 2000 + 3000)
= 2 × 7400 = 14800 cm2
Surface area of box (b) = 6 × (side)2 = 6 × 502 = 15000 cm2
Hence, box (a) required less amount of material than box (b) to make.

MP Board Solutions

Question 2.
A suitcase with measures 80 cm × 48 cm × 24 cm is to be covered with a trapaulin cloth. How many metres of trapaulin of width 96 cm is required to cover 100 such suitcases?
Solution:
Let l, b and h be the length and breadth and height of the suitcase respectively.
⇒ l = 80 cm, b = 48 cm, h = 24 cm
Total surface area of suitcase = 2(lb + bh + hl)
= 2(80 × 48 + 48 × 24 + 24 × 80)
= 2(3840 + 1152 + 1920) cm2 = 2(6912) cm2 = 13824 cm2
Area of cloth required for 1 suitcase = Area of 1 suitcase
⇒ l × 96 = 13824
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3 2
Length required for 100 suitcases
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3 3

Question 3.
Find the side of a cube whose surface area is 600 cm2.
Solution:
Surface area of cube = 6 × (side)2
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3 4

MP Board Solutions

Question 4.
Rukhsar painted the outside of the cabinet of measure 1 m × 2 m × 1.5 m. How much surface area did she cover if she painted all except the bottom of the cabinet.
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3 5
Solution:
Rukhsar painted all the cabinet except the bottom means she painted 4 walls and 1 top. Let l = 1 m, b = 2 m, h = 1.5 m be the length, breadth and height of cabinet respectively.
Area of painted cabinet
= (lb + bh + bh + lh + lh)
= [l × 2 + 2 × 1.5 + 2 × 1.5 + l × 1.5 + l × 1.5]m2
= [2 + 3.0 + 3.0 +1.5 +1.5] m2 = 11 m2.

MP Board Solutions

Question 5.
Daniel is painting the walls and ceiling of a cuboidal hall with length, breadth and height of 15 m, 10 m and 7 m respectively. From each can of paint 100 m2 of area is painted. How many cans of paint will she need to paint the room?
SOlution:
Daniel is painting 4 walls and 1 ceiling.
∴ Total painted area = Area of 4 walls + Area of ceiling
Let l = 15, b = 10 and h = 7 be the length, breadth and height of the hall respectively. = 2 × h(l + b) + lb = {2 × 7 (15 +10) + (15 × 10)} m2
= {14 (25) +150} m2 = {350 +150} m2 = 500 m2
If 100 m2 of area is painted with one can
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3 6

Question 6.
Describe how the two figures given below are alike and how they are different. Which box has larger lateral surface area?
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3 7
Solution:
Alike: They both have same height. Different: Their shapes are different one is cylinderical and other is cubical box.
Let r and h be the radius and height of the cylinder.
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3 8
Let the side of cube be a = 7 cm
⇒ Lateral surface area = 4(a)2 = 4(7)2 cm2 = 196 cm2
∴ Cubical box has larger lateral surface area.

Question 7.
A closed cylindrical tank of radius 7 m and height 3 m is made from a sheet of metal. How much sheet of metal is required ?
Solution:
Let r and h be the radius and height of the closed cylinder.
Total surface area = 2πr(r + h)
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3 9

MP Board Solutions

Question 8.
The lateral surface area of a hollow cylinder is 4224 cm2. It is cut along its height and formed a rectangular sheet of width 33 cm. Find the perimeter of rectangular sheet ?
Solution:
Let r and h be the radius and height of the hollow cylinder and l be its lateral surface area.
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3 10

Question 9.
A road roller takes 750 complete revolutions to move once over to level a road. Find the area of the road if the diameter of a road roller is 84 cm and length is 1 m.
Solution:
Area covered in 1 revolution = curved surface area of cylinder
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3 11
∴ Area covered in 750 revolutions = 2.64 × 750 m2 = 1980 m2

MP Board Solutions

Question 10.
A company packages its milk powder in cylindrical container whose base has a diameter of 14 cm and height 20 cm. Company places a label around the surface of the container (as shown in figure). If the label is placed 2 cm from top and bottom, what is the area of the label.
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3 12
Solution:
MP Board Class 8th Maths Solutions Chapter 11 Mensuration Ex 11.3 13

MP Board Class 8th Maths Solutions